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An efficacy evaluation method 
for non-normal outcomes in 
randomized controlled trials
Yang Li1,2,3, Zhang Zhang2,3, Qian Feng5, Danhui Yi1,2,3 & Fang Lu4

Randomized controlled trials (RCT) are widely used in clinical efficacy evaluation studies. Linear 
regression is a general method to evaluate treatment efficacy considering the existence of confounding 
variables. However, when residuals are not normally distributed, parameter estimation based on 
ordinary least squares (OLS) is inefficient. This study introduces an exponential squared loss (ESL) 
model to evaluate treatment effect. The proposed method provides robust estimation for non-
normal data. Simulation results show that it outperforms ordinary least squares regression with 
contaminated data. In the mild cognitive impairment (MCI) efficacy evaluation study with traditional 
Chinese medicine, our method is applied to construct a linear efficacy evaluation model for the 
difference in Alzheimer’s disease assessment scale-cognitive (ADAS-cog) scores between the final 
and baseline records (ADASFA), with the existence of confounding factors and non- normal residuals. 
The results coincide with existing medical literatures. This proposed method overcomes the limitation 
of confounding variables and non-normal residuals in RCT efficacy studies. It outperforms OLS on 
estimation efficiency in situations where the percentage of non-normal contamination reaches 30%. 
These advantages make it a good method for real-world clinical studies.

Mild cognitive impairment (MCI) is a syndrome defined as a cognitive decline, which may affect daily activities. 
The amnesic subtype of MCI has a high risk of progression to Alzheimer’s disease and could lead to a prodromal 
stage of this disorder1. Alzheimer’s disease assessment scale-cognitive (ADAS-cog) subscale measures the pro-
gression of MCI in 11 relevant fields, namely spoken language ability, comprehension of spoken language, recall 
of test instructions, word-finding difficulty, following commands, naming, constructions, ideational praxis, ori-
entation, word recall, and word recognition. Detailed information on ADAS-cog subscale can be found in Rosen 
et al.2.

Institute of Clinical Pharmacology at Xiyuan Hospital conducted a phase III randomized clinical trial to eval-
uate the efficacy of a traditional Chinese prescription on MCI. The double blinded randomized clinical trial was 
conducted in eight qualified medical centres across China with 216 patients allocated to the treatment arm and 
108 retained as control. Two patients dropped out from each arm, resulting in 320 complete observations in the 
final dataset. Data on the difference between final ADAS-cog score and baseline scores (ADASFA) were recorded 
for the efficacy study. Previous literatures have used ADASFA in efficacy evaluation of MCI or Alzheimer’s dis-
ease3,4. The most intuitive idea is to test whether the treatment and control means are equal. However, Morgan and 
Rubin5 argued that the baseline equivalence is not guaranteed although the allocation is randomized. Imbalance 
in baseline covariates could confound the statistical test when comparing ADASFA between the two arms. Ten 
variables, specifically age, height, weight, gender, education, ethnicity, occupation, centre, drug (whether the 
patient took a drug for MCI in the past three months), and ADAS1 (the baseline record of ADAS-cog6), were 
recorded as potential covariates. Table 1 shows descriptive statistics of these variables. The explorative covari-
ance analysis presented in Table 2 indicates that the variable of centre and ADAS1 may confound the efficacy 
evaluation of ADASFA. This implies that a linear regression model should be involved rather than using a simple 
statistical test in this study, that is,
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where p is the number of covariates. We denote a binary variable xj = 1 to represent the treatment arm and xj = 0 
for the control arm. The efficacy can be evaluated by the corresponding coefficient βj 7. Ordinary least squares 
(OLS) is a general parameter estimation method for simple linear regression which performs as the best linear 
unbiased estimation when assuming independent identical normally distributed errors:

ε σ| .~x N(0, )2

However, the QQ plot in Fig. 1 shows that the MCI dataset may not follow a normal distribution and a 
Shapiro-Wilk test (W=0.9283, p-value = 2.799e-11) also suggests a similar result. The contaminated non-normal 
part may come from either measurement error or mixed distribution8, which is commonly presented in medi-
cal studies9,10. This could lead to inefficient efficacy estimation by using OLS since the contaminated part is not 
addressed11. A more robust estimation method in linear regression is, therefore, required in such studies.

Many robust methods have been discussed in literatures. Bao12 developed a rank-based estimate in linear 
regression. Wang et al.13 proposed an robust estimation via least absolute deviation while Wang et al.14 introduced 
an exponential squared loss (ESL) to select variables robustly. Since the breakdown point of ESL is almost 50%, 
we adopt it in the MCI efficacy evaluation study. Numerical studies show that the proposed method can achieve 
a more accurate estimation with a large proportion of contamination in the dataset. Additionally, the estima-
tions are consistent with OLS when contamination proportions are relatively low. Therefore, it can be used as 
a complementary efficacy evaluation method in real-world clinical studies regardless of the presence or lack of 
contaminations.

Discrete Categories

Sample size

Continuous

Mean ± SD Median

Treatment 
arm

Control 
arm Treatment arm Control arm

Treatment 
arm

Control 
arm

gender
male 88 46 age 62.75 ± 7.90 63.77 ± 8.28 62.00 62.50

female 126 60 height (cm) 163.80 ± 7.27 164.43 ± 7.45 163.00 163.00

education
primary 40 26 weight (kg) 64.34 ± 9.23 65.09 ± 9.46 65.00 65.00

middle and 
above 174 80 ADAS1 14.83 ± 6.40 15.11 ± 6.12 13.85 14.85

ethnicity
Han 206 105 ADASFA 3.99 ± 4.11 4.13 ± 3.92 3.67 4.00

Non-Han 8 1

occupation
Physical 55 31

Mental 159 75

drug
without 155 71

with 59 35

centre

centre1 23 10

centre2 8 4

centre3 32 16

centre4 24 12

centre5 24 12

centre6 48 24

centre7 24 12

centre8 31 16

Total 214 106

Table 1.  Descriptive statistics of variables.

Degrees of 
freedom

Sum of 
squares Mean square F-value P-value

group 1 3.43 3.43 0.31 0.58

centre 7 375.73 53.68 4.80 <0.001

group*centre 7 104.41 14.92 1.33 0.234

ADAS1 1 1439.67 1439.67 128.79 <0.001

error 303 3387.00 11.18

Corrected total 319 5204.11

Table 2.  An example of covariance analysis.
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Methods
Model.  Suppose there are n subjects, denoted as =x y{( , )}i i i

n
1 where yi is the outcome and xi = (xi1, …, xip)T is a 

p-dimensional vector of covariates. A linear regression model is,

β ε= + = y x i n, 1, 2, ,i i
T

i

where β is a p-dimensional vector of unknown parameters while εi is independent and identically distributed 
with some unknown distribution satisfying E(εi) = 0 and εi ╨ xi.

The ESL function has been used in AdaBoost for classification problems with success15. Wang et al.14 expanded 
the use of the ESL function for robust variables selection. We now use it to estimate parameters in linear regres-
sion without sparsity. The ESL function is defined as

γ
Φ = −





−




γ t t( ) 1 exp ,

2

which is a function of t, and γ, where the latter is a tuning parameter. To estimate model parameters (β), the 
objective function of ESL is to maximize,

∑β
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γ
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The tuning parameter γ controls the degree of robustness of the estimator. With a relatively large γ, the pro-
posed estimator gets close to the OLS estimator while a smaller γ leads to a limited influence of contaminations 
on the estimator. Since the tuning parameter γ controls the degree of robustness and efficiency of the estimator, 
a data-driven procedure that yields both high robustness and high efficiency simultaneously is used to select an 
appropriate γ. The entire calculation process in terms of ESL borrows from the idea proposed in Wang et al.14:

	 1.	 Find the pseudo outlier set of the sample. Let Dn = {(x1, y1), …, (xn, yn)}. Then, calculate 
β β= − = 

ˆ ˆr y x i n( ) , 1, 2, ,i n i i
T

n  and β β= . × | − |ˆ ˆS r r1 4826 median ( ) median ( ( ))n i i n j j n . Take the 
pseudo outlier set as β= ≥ .ˆD x y r S{( , ): ( ) 2 5 }m i i i n n , where m is the cardinality of Dm set and Dn−m = Dn/Dm.

	 2.	 Update the tuning parameter γ. Let γ be the minimiser of det γV̂( ( )) in the set G = {γ:ζ(γ) ∈ (0, 1]}, and 
ζ γ β γ β β= + ∑ Φ = Σγ= +
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	 3.	 Update β̂n. After selecting γ in step 2, update β̂n by maximizing (1).

We set the MM estimator16 βn as the initial estimator. The algorithm is an iterative procedure as shown above. 
To attain high efficiency, we choose the tuning parameter γ by minimizing the determinant of asymptotic covar-
iance matrix as in Step 2. Since the calculation of det γV̂( ( )) depends on the estimation of βn, we update βn in Step 
3 and repeat the algorithm until the convergence condition β β− < −ˆ ˆ 10n

old
n
new 2 is satisfied.

Figure 1.  QQ plot of residuals in the MCI study using OLS.
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Simulations.  In order to verify the performance of the introduced method, we conduct numerical studies 
to compare bias and mean squared errors (MSE) of the estimators of our algorithm (ESL) versus those from the 
ordinary least squares (OLS).

Simulate data =x y{( , )}i i i
n

1 as follows, where xi = (xi1, xi2, …, xip)T, i = 1, 2, …, n with p = 7 and n = 300. The first 
six covariates are continuous, that is, xij ~ N(0, 1) for j = 1, 2, …, 6 and xi7 is categorical, selected from {1, 2, …, 4}. 
Convert xi7 into three binary variables, denoted as zi1, zi2, zi3 where zij represents whether xi7 belongs to the j-th 
category and zi1 = zi2 = zi3 = 0 means xi7 belongs to the last category. Thus, we have xi = (xi1, xi2, …, xi6, zi1, zi2, zi3)T. 
Let β = (β0, β1, …, β9)T where β = (1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8)T. The error term of contamination (out-
lier) follows t(1) distribution, and the error term of non-outlier follows standard normal distribution, N(0, 1). The 
proportion of contamination considered is 10%, 20% and 30%, respectively. For each proportion of contamina-
tion, the average mean, bias, standard deviation (SD), and MSE of ESL and OLS over 100 replications is reported 
in Table 3.

Figure 2–4 show error bars of ESL and OLS with three proportions of contaminations, where the triangular 
points represent true values of parameters, the circles points represent means of estimator means,s and vertical 
lines mean represent standard deviations. ‘truej’, ‘eslj’, and ‘olsj’ refer to the corresponding parameter j for true 
value, ELS, and OLS estimations. It can be seen that the widths of error bars using ESL are significantly consider-
ably shorter than those using OLS, which implies that the standard deviation of the ESL estimator in ESL is much 
smaller than that in of OLS, and our method is more robust.

Results
In the MCI study, the linear regression model is conducted as follows:

β β β β β
β β β β β
β β β β ε

= + + + +
+ + + + +
+ + + + +

ADASFA age bmi ADAS centre centre
centre centre centre centre group
gender education occupation drug

1 2 3
4 5 6 7

1 2 3 5 6

7 8 9 10 11

12 13 14 15

Contamination 
Proportion (%) β

ESL OLS

Mean Bias SD MSE Mean Bias SD MSE

10

1.000 1.005 0.005 0.120 0.014 1.000 0.000 1.199 1.424

1.200 1.200 0.000 0.059 0.003 0.757 −0.443 4.717 22.225

1.400 1.388 −0.012 0.067 0.005 1.206 −0.194 0.983 0.994

1.600 1.608 0.008 0.062 0.004 1.111 −0.489 4.940 24.404

1.800 1.788 −0.012 0.063 0.004 2.283 0.483 4.944 24.430

2.000 2.000 0.000 0.067 0.004 1.797 −0.203 2.451 5.989

2.200 2.200 0.000 0.073 0.005 2.576 0.376 3.423 11.739

2.400 2.413 0.013 0.196 0.038 2.533 0.133 2.635 6.893

2.600 2.613 0.013 0.172 0.029 2.209 −0.391 2.848 8.183

2.800 2.761 −0.039 0.166 0.029 4.040 1.240 12.925 166.923

20

1.000 0.998 −0.002 0.119 0.014 0.952 −0.048 1.180 1.380

1.200 1.206 0.006 0.057 0.003 1.824 0.624 6.962 48.375

1.400 1.399 −0.001 0.061 0.004 2.094 0.694 4.178 17.763

1.600 1.594 −0.006 0.052 0.003 1.389 −0.211 4.044 16.235

1.800 1.800 0.000 0.072 0.005 3.146 1.346 9.641 93.837

2.000 2.001 0.001 0.058 0.003 2.802 0.802 9.554 91.002

2.200 2.215 0.015 0.064 0.004 1.144 −1.056 12.393 153.157

2.400 2.388 −0.012 0.190 0.036 2.768 0.368 4.622 21.282

2.600 2.621 0.021 0.169 0.029 −0.159 −2.759 36.200 1304.968

2.800 2.783 −0.017 0.157 0.025 2.750 −0.050 2.829 7.927

30

1.000 1.001 −0.199 0.153 0.090 0.490 −0.710 4.589 21.518

1.200 1.210 −0.590 0.071 0.380 4.637 2.837 41.919 1759.396

1.400 1.394 −1.006 0.072 1.044 0.477 −1.923 11.368 132.534

1.600 1.608 −0.059 0.071 0.664 2.416 0.749 9.555 91.850

1.800 1.805 0.205 0.077 0.074 2.129 0.529 3.359 11.552

2.000 1.996 −0.204 0.073 0.074 −0.272 −2.472 25.998 679.801

2.200 2.201 0.067 0.075 0.662 5.254 3.121 39.104 1536.506

2.400 2.389 0.989 0.204 1.047 −6.055 −7.455 106.666 11395.273

2.600 2.607 0.607 0.221 0.444 3.612 1.612 5.673 34.700

2.800 2.808 0.208 0.215 0.116 5.459 2.859 17.469 312.362

Table 3.  Average results over 100 replications of ESL and OLS for 10%, 20%, and 30% contamination 
proportions, respectively.
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We include these variables in the model based on our clinical experience and existing literatures. In addition, 
we transform weight and height into a new variable BMI, since there are discussions on whether BMI has an 
effect on MCI. We exclude ethnicity and marital status from our model mainly because these two variables are 
extremely unbalanced between the treatment and control arms, and also due to the fact that almost no literature 
suggests that these two variables have an effect on MCI. Since 11 out of 16 variables are categorical variables, we 
do not consider interaction effects. The by-centre descriptive analysis is presented in Table 4 and 5.

Table 6 shows the parameter estimations using ESL and OLS. The empirical 95% confidence interval is cal-
culated by the bootstrap approach. When the bootstrap confidence interval does not include 0, it indicates that 
the corresponding covariate has a significant effect on the primary outcome. Note that there are some differences 
between the ESL and OLS estimations. For example, the effects of centre5 and centre8 on ADASFA are opposite. 
Given the non-normal residuals, the ESL estimators are more accurate. From the results, we can conclude that

	(1)	 ADAS1 and centre 6 have significant influences on ADASFA since their bootstrap confidence intervals do 
not contain 0. From the medical view, higher ADAS1 means patients are in worse health situation, which 
can have a positive effect on ADASFA.

	(2)	 ESL and OLS both show that ADAS1 has a positive effect on decreasing ADAS-cog. For age, ESL shows 
that age has no effect on decreasing ADAS-cog because its bootstrap confidence interval contains 0 while 
OLS shows that age has a negative effect on decreasing ADAS-cog. From a medical viewpoint17, it is veri-
fied that ‘age’ has a significant effect on MCI. Prior work has demonstrated that rates of dementia increase 
exponentially with age18,19. However, the significant effect of age on MCI does not mean that it also influ-
ences the treatment effect.

	(3)	 The ESL group coefficient is −0.141 and its bootstrap confidence interval contains 0. This result makes 
sense because this project is a non-inferiority trial and the treatment group was not worse than the control 
group.

	(4)	 The ESL shows that centres 3, 6, and 7 have significant effects on the outcome. However, OLS shows that 
centres 3 and 7 have no significant impact but centre 6 has a significant effect on the outcome. Accord-
ing to Table 4, the average ADAS1 of centre 6 is much lower than that of centres 3 and 7, which implies 

Figure 2.  Error bars of ESL and OLS with 10% contamination.

Figure 3.  Error bars of ESL and OLS with 20% contamination.
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Centre Continuous

Treatment Control Treatment Control

Mean Sd Mean Sd Median Median

1

age 56.39 7.48 58.90 8.37 53.00 58.00

bmi 23.57 1.67 23.44 1.72 23.92 23.13

ADAS1 12.36 4.99 12.03 6.91 13.00 12.70

ADASCHA 2.60 2.00 2.18 2.11 2.40 2.00

2

age 66.00 7.60 66.75 8.30 67.50 67.50

bmi 23.82 1.33 22.71 3.62 23.84 22.70

ADAS1 8.08 3.78 8.25 3.52 7.30 8.00

ADASCHA 2.63 3.19 4.68 3.30 2.55 5.00

3

age 64.25 6.41 62.63 7.39 64.00 61.00

bmi 24.00 2.60 24.29 2.47 24.24 23.94

ADAS1 17.70 5.57 18.53 5.63 17.00 19.15

ADASCHA 5.68 3.45 4.86 4.16 4.87 4.55

4

age 64.88 7.92 64.50 9.02 66.50 63.50

bmi 24.68 2.53 24.85 2.66 24.97 24.37

ADAS1 20.71 6.49 21.11 5.76 19.65 20.85

ADASCHA 4.22 3.31 6.55 6.12 4.14 5.55

5

age 65.71 9.07 60.75 6.77 66.00 59.50

bmi 24.16 2.50 25.64 2.62 24.49 26.02

ADAS1 18.39 5.52 17.91 5.13 19.33 19.35

ADASCHA 4.53 3.63 4.91 1.43 4.37 5.05

6

age 64.63 7.55 67.83 6.55 66.00 69.00

bmi 24.55 3.27 23.84 3.09 24.57 23.80

ADAS1 10.55 4.75 10.87 3.37 9.40 10.30

ADASCHA 3.94 4.46 4.59 3.33 3.64 4.00

7

age 58.17 5.95 57.42 4.87 57.50 56.00

bmi 22.69 1.99 22.96 2.80 22.99 22.23

ADAS1 15.69 5.84 14.66 3.60 14.85 14.95

ADASCHA 3.21 6.69 2.78 5.06 4.70 3.80

8

age 61.81 6.96 67.63 9.54 60.00 70.50

bmi 23.45 3.48 23.77 3.59 22.66 23.14

ADAS1 14.09 5.07 15.41 5.77 15.30 14.55

ADASCHA 3.67 3.49 2.41 2.70 2.60 1.45

Table 4.  Continuous variable descriptive statistics.

Centre Group

Gender Education Ethnicity Occupation Drug

Male Female Primary
Middle 
and above Han

Non-
han Physical Mental Without With

1
Treatment 8 15 4 19 23 0 7 16 22 1

Control 3 7 3 7 10 0 3 7 9 1

2
Treatment 2 6 1 7 8 0 1 7 4 4

Control 4 0 1 3 4 0 0 4 0 4

3
Treatment 11 21 2 30 32 0 3 29 22 10

Control 7 9 3 13 16 0 2 14 12 4

[0]*4 Treatment 15 9 6 18 23 1 9 15 18 6

Control 6 6 4 8 12 0 5 7 9 3

5
Treatment 10 14 3 21 23 1 7 17 14 10

Control 3 9 2 10 12 0 3 9 9 3

6
Treatment 22 26 9 39 43 5 16 32 30 18

Control 13 11 10 14 23 1 10 14 13 11

7
Treatment 8 16 5 19 23 1 3 21 22 2

Control 4 8 0 12 12 0 3 9 10 2

8
Treatment 12 19 10 21 31 0 9 22 23 8

Control 6 10 3 13 16 0 5 11 9 7

Table 5.  Discrete variable descriptive statistics.
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that patients in centres 3 and 7 are in worse conditions. Moreover, patients in different centres may have 
different non-compliance levels, which may also contribute to the result that some centres have significant 
effects on the outcome while others do not.

	(5)	 Since we have shown that the data is not normally distributed, we can have greater confidence in the ESL 
results.

Conclusion
In this paper, we discuss a method to evaluate efficacy in a randomized control MCI study. As many covariates may 
influence the outcome, a linear regression model is considered rather than comparing group means using t test or 
ANOVA. An exponential squared loss function, which is superior to OLS when dealing with non-normal residuals, 
is introduced in this study. Simulation results show that the ESL model yields more efficient estimation than OLS 
in non-normal data. The proposed method is also robust in the case of data with outliers. These advantages of the 
ESL model become more noticeable when the contamination percentage increases. The proposed method does not 
require the normal distribution assumption, offering new insight in the efficacy evaluation for practical researchers.
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above = 1) 0.383 (−0.441, 1.285) 0.921 (−1.275, 0.589)
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drug(with = 1) −0.08 (−1.197, 0.912) 0.035 (−1.197, 0.912)

Table 6.  Estimation results in MCI study using ESL and OLS.

Figure 4.  Error bars of ESL and OLS with 30% contamination.
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