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Abstract

Motivation: Recombination is a fundamental process in molecular evolution, and the identification of
recombinant sequences is thus of major interest. However, current methods for detecting recombinants
are primarily designed for aligned sequences. Thus they struggle with analyses of highly diverse genes,
such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify
primarily through recombination.
Results: We introduce an algorithm to detect recent recombinant sequences from a dataset without a full
multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a
reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in
particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm
to a dataset of 17,335 DBLα types in var genes from Ghana, observing that sequences belonging to the
same ups group or domain subclass recombine amongst themselves more frequently, and that non-
recombinant DBLα types are more conserved than recombinant ones.
Availability: Source code is freely available at https://github.com/qianfeng2/detREC_program.
Contact: yaoban@unimelb.edu.au
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Recombination, the exchange of genetic materials between two molecular
sequences, is a fundamental evolutionary process in viruses, prokaryotes,
eukaryotes, and even between kingdoms. The biological mechanisms of
recombination, which differ across different species, lead to the creation

of novel ‘mosaic’ sequences in which different regions have distinct
evolutionary histories.

In population genetics, recombination plays a central role in
shaping the patterns of linkage disequilibrium, and thus recombination
identification is of importance for estimating recombination rates,
quantitative trait loci and association studies (Drysdale et al., 2000; Li and
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Stephens, 2003). Recombination also explains a considerable amount of
the genetic diversity of human pathogens (Robertson et al., 1995; Holmes
et al., 1999; Gibbs et al., 2001), such as the malaria parasite Plasmodium
falciparum (Jiang et al., 2011; Claessens et al., 2014) or protozoan
parasites (Weatherly et al., 2016). It plays a central role for parasites to
escape from host immune pressures, or adapt to the effects of antiparasitic
drugs. Characterisation of recombination events in these pathogens would
aid in the understanding of these evolutionary mechanisms.

Many methods have been developed for identifying recombination
events and/or recombinants (e.g., Martin and Rybicki, 2000; Posada and
Crandall, 2001; Kosakovsky Pond et al., 2006; Auton and McVean, 2007;
Boni et al., 2007, see Lemey et al., 2009 for a review). They can be roughly
characterised into four paradigms:

1. Distance-based methods (Siepel et al., 1995; Huber et al., 2004;
Buendia and Narasimhan, 2007) look for inversions of distance
patterns among the sequences. They usually employ a sliding-window
approach to estimate distances and are generally computationally
efficient.

2. Phylogenetic methods (Hein, 1990; Holmes et al., 1999; Martin and
Rybicki, 2000) look for discordant topologies in adjacent sequence
segments, which is taken as a sign of recombination.

3. Compatibility methods (Jakobsen and Easteal, 1996) test for
phylogenetic incongruence on a site-by-site basis.

4. Substitution distribution-based methods (Smith, 1992; Posada and
Crandall, 2001; Boni et al., 2007) use a test statistic to examine
adjacent sequence segments for signals of recombination.

Nearly all available methods require a multiple sequence alignment;
this is commonly available for population genetic datasets which have
relatively low intra-population diversity, but may be unreliable for datasets
with higher diversity. Likewise, many of the most commonly used
methods, such as RDP (Martin and Rybicki, 2000) or 3SEQ (Boni et al.,
2007), are triplet-based; that is, they test for recombination signals in
each possible triplet of sequences, which can become slow as modern-day
datasets grow larger and larger. Finally, some (though not all) methods
(e.g., Siepel et al., 1995) require a reference panel of known non-
recombinant sequences, which potential recombinants can be compared
against. We aim to develop a method which works directly on sequences
without requiring a full multiple sequence alignment or a reference panel,
and is fast enough to be practical for large datasets.

We focus on the specific application of detecting recombinants in
the var genes of Plasmodium falciparum. These genes express the
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1),
which is the main target of the human immune response to the blood
stages of infection. The var genes are a large and diverse gene family (up
to 60 copies per genome), and high levels of diversity in the var genes
have been observed in a single parasite genome, as well as small local
populations (Rask et al., 2010; Chen et al., 2011; Ruybal-Pesántez et al.,
2017; Day et al., 2017). This diversity is driven primarily by homologous
recombination (Claessens et al., 2014), and so an accurate identification of
var recombinants is critical to understanding the evolution of the system.

We focus on the DBLα domain, which is the only domain encoded
by all (but one) members of the var multigene family. This domain has
been found to be immunogenic (Tessema et al., 2019) and is crucial to
understanding acquired immunity and potential for vaccination (Sherman,
2011). Unfortunately, the DBLα domain is highly variable in terms
of both length and sequence composition, with datasets (Tonkin-Hill
et al., 2021) containing tens of thousands of disparate sequences. Under
these conditions, multiple sequence alignments constructed from these
datasets are very unreliable, and a phylogenetic tree is not an appropriate
representation of their evolutionary history due to frequent recombination.

Thus, it is difficult to reconstruct an explicit evolutionary history of the
DBLα domain.

The first systematic attempt to map out recombination in var genes
was performed by Zilversmit et al. (2013), who developed a method based
on a jumping hidden Markov model (JHMM) to align a sequence to its
nearest relations in a reference dataset, allowing jumps between sequences
which represent recombination events. They used this method to “paint”
each sequence according its nearest relations. However, this method does
not identify the recombinant sequences themselves, only recombination
events. An explicit identification of recombinants and non-recombinants
would enable direct comparison between them, helping to determine the
effect of recombination on the structure and function of the gene.

Because each sequence is considered individually, the JHMM is limited
to the detection of ‘recent’ recombination events; that is, recombinations
whose signal can be found only in one sequence in the dataset. In contrast, a
single more ancient recombination may leave traces in multiple sequences,
hindering the ability to detect them. It is thus an unavoidable consequence
that any method based on the information provided by the JHMM is limited
to the detection of recent recombinants, i.e., the descendants of recent
recombinations.

In this paper, we develop a new method to identify recent recombinants
in a large dataset of sequences, that does not require a multiple
sequence alignment. This method exploits the information produced by
the JHMM method, combining it with a distance-based comparison to
identify recombinants. Extensive simulations confirm the accuracy and
applicability of our method, in particular in the context of sequences with
insertions and deletions. We also show that our method is more accurate
than many currently used methods. Finally, we apply our method to a
large dataset of DBLα sequences, producing several new biological results
concerning the patterns of recombination in this domain.

2 Methods
We propose a novel method to detect recombinant sequences in a set of
protein or DNA sequences for which a full multiple alignment is difficult
to construct or unreliable. It takes as input a set of homologous sequences,
and outputs the sequences that are identified as recombinant, their putative
parents, and the corresponding breakpoints.

See Figure 1 for a graphical overview of our method. It consists of the
following steps:

1. We apply the JHMM method of Zilversmit et al. (2013) to represent
each sequence as a ‘mosaic’ of segments from other sequences in the
dataset.

2. We identify ‘recombinant triples’ which contain a recombinant
segment and its two parents. The mosaic representations provide
pairwise alignments for each of these triples, which we then complete
to three-way alignments with the MAFFT algorithm (Katoh and Frith,
2012).

3. Using a distance-based approach, we identify the recombinant
sequence in each triple.

Note that extant sequences are identified as the ‘parents’ of the
recombinant; more accurately, we identify the descendants of the ancestral
sequences which were the parents of the recombination.

We discuss each step in detail in the following sections.

2.1 Calculating mosaic representations

We first use the jumping hidden Markov model of Zilversmit et al. (2013).
In this model, each character in a ‘target’ sequence is considered to be a
copy from a character in a sequence in a reference set (‘source’ sequences).
The hidden state of the Markov model is the (position of the) character
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Fig. 1. A schematic of the algorithm. From an input set of unaligned sequences, we first use the JHMM method to represent each sequence as a mosaic of other sequences. Next, we
identify triples of segments, consisting of a recombinant segment and its two parents, and complete their alignment with the MAFFT algorithm. Finally, we identify the recombinant in each
triple using a distance-based approach.

which is copied. The copy may be imperfect, representing mutation. After
a character is copied, the next character in the target sequence is usually
copied from the next character in the same source sequence. However,
with small probabilities:

• the source character may switch to any character in any position in
another sequence, representing recombination;

• the model switches to an ‘insertion’ state, where the target character
is chosen randomly and the source character does not move;

• the model switches to a ‘deletion’ state, where the source character
moves forward without being copied.

If the model is in an insertion or deletion state, it continues in this state until
(with a small probability per character) we return to copying characters
from the current source sequence.

We first estimate the parameters of the model, following Tonkin-Hill
et al. (2021). The parameters are the probabilities of gap initiation δ, gap
extension ε, and recombination (source switching) ρ. We first set ρ to zero,
and compute maximum likelihood estimates for δ and ε with the Baum-
Welch algorithm (see Rabiner, 1989). We then calculate the composite
likelihood of all sequences for all values of ρ over the interval [0, 0.1]
under the estimated δ̂ and ε̂, and choose the value of ρ which maximises
this likelihood as our estimate ρ̂.

Finally, we calculate the Viterbi path for each target sequence to find
the most probable sequence of hidden states (copied characters, insertions,
and deletions). The result is a ‘mosaic’ alignment for each sequence to a
series of segments from the other sequences in the dataset. An example of
this can be seen in Figure 2A in Zilversmit et al. (2013).

For large-scale datasets, training the JHMM model is a significant
bottleneck for our method. We again follow Tonkin-Hill et al. (2021),
and use the Viterbi training algorithm (Rodríguez and Torres, 2003) in
place of the Baum-Welch to estimate δ and ε, and calculate the composite
likelihood over 1000 randomly selected sequences to estimate ρ. This
allows us to analyse large datasets (such as the DBLα dataset in Section
3.2) in a practical timeframe with only a small loss in accuracy.

2.2 Identifying recombinant triples and calculating multiple
sequence alignments

For each breakpoint in each sequence, we identify the triple of the target
sequence and the two sequences which contain the source segments before
and after the breakpoint as a ‘recombinant triple’, that is, the two parents
and the child of a recombination. This results in a list of recombinant
triples, some of which may refer to the same recombination event. The
JHMM method only provides a pairwise alignment of each target segment
to one source segment. We take these pairwise alignments and add the
corresponding segment from the remaining source sequence in the triple,
using the MAFFT algorithm (Katoh and Frith, 2012). For each triple, this
results in a multiple alignment of the segments surrounding the breakpoint.
See Supplementary Figure S16 for an overview of this process.

Note that we require a sufficient sequence length on either side of
the breakpoint in order to calculate distances accurately. Moreover, we
observe in practice that short source segments resulting from the JHMM
method tend to be artifacts of the method, rather than representing multiple
consecutive recombinations. To address this, we exclude triples for which
the aligned segment on either side of the breakpoint has length less than
10, which we found to be a suitable threshold in practice.

2.3 Identifying recombinant sequences

We now apply the well-known principle (Posada and Crandall, 2001;
Smith, 1992; Boni et al., 2007) that two non-recombinant sequences will
have a similar evolutionary distance all along the sequence; that is, the
distance between the two sequences does not change before and after a
recombination breakpoint in a third sequence. Conversely, the distance
between a recombinant sequence and another sequence does change at
a breakpoint. Using a distance-based method here allows us to avoid an
expensive tree or network inference step and thus scale our method to many
sequences.

We calculate, for each recombinant triple {a, b, c}, the evolutionary
distance between each pair of segments before and after the breakpoint.
We use here the BLOSUM62 distance (Henikoff and Henikoff, 1992) for
amino acids and Hamming (mismatch) distance for DNA sequences (these
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could in principle be substituted by a large variety of ways to calculate
evolutionary distance). We denote these distances by D1 and D2 for the
first (pre-breakpoint) and second (post-breakpoint) segment respectively.
The pair with the smallest absolute difference in distance before and after
the breakpoint are inferred to be the two non-recombinant sequences, while
the third is inferred to be recombinant. Formally, we have

recombinant = {a, b, c} \ argmin
{x,y}⊂{a,b,c}

|D1(x, y)−D2(x, y)|.

This method identifies one recombinant from each recombinant triple;
note that one recombination may generate one or more triples, but the
identified recombinant from each of these triples should be the same. We
apply this to all triples identified above, generating a list of recombinants
in the entire dataset and their putative parents.

2.4 Calculating support values

In addition to identifying recombinant sequences, we can also measure the
uncertainty in our identification by using bootstrapping. For each multiple
alignment of a triple, we resample characters in the alignment (columns)
within each segment, with replacement. This provides us with a resampled
alignment, and we generate 100 replicates per triple. We then run our
distance-based method to identify the recombinant for each replicate. The
proportion of replicates which infer the same recombinant as the original
alignment is the support value of this detection. The larger the support
value, the more certain we are of the detection.

3 Results

3.1 Simulations

We conducted extensive simulations to evaluate the effectiveness of our
method. Our simulation protocol is as follows:

1. Simulate a tree (genealogy) under the coalescent (without
recombination) using msprime (Kelleher et al., 2016).

2. Evolve amino acid sequences from a common ancestor along the tree
using Pyvolve (Spielman and Wilke, 2015). If insertions and/or
deletions are required, we useINDELible (Fletcher and Yang, 2009)
instead.

3. Generate recombinant sequences from two or more randomly chosen
sequences in the dataset, with breakpoints chosen uniformly at random
along the genome. The parent sequences are removed from the dataset.

This simulation produces a dataset which can be clearly separated
into recombinants and non-recombinants. Manually performing the
recombination step guarantees that we have only recent recombinants,
which our method is designed to detect. Moreover, the non-recombinants
are guaranteed to have no ancient recombination events in their history.
Note that while we do not evolve our sequences further after recombination,
we do remove the parents from the dataset, which produces a similar effect:
their nearest extant relations in the dataset are evolutionarily separated
from the recombinant sequence. In our simulations, we simulate both
equal-length sequences (no indels), and unequal-length sequences with
indel events, generating unaligned input.

There are a wide variety of parameters which could potentially affect
the performance of the method. We vary the proportion of recombinant
sequences in the dataset; the number of recombinations per recombinant;
the number of sequences in the dataset; the sequence length; the mutation
rate; and the substitution model. For simulations with insertions and
deletions, we also vary indel rate and size. To keep our simulations
tractable, we only vary one parameter at a time, keeping the remainder
fixed at default values (Supplementary Tables 2 and 3). For each parameter
combination, we simulate 100 datasets and run our method on each dataset
in turn.
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Fig. 2. Mean sensitivity and specificity (with 95% confidence intervals) for varying
indel rate.
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Fig. 3. Distribution of sensitivity (for matched specificity) for different recombinant
detection methods on simulated datasets with (left) and without (right) indel events.

Our results are shown in Supplementary Section 2. In summary, we
find that the method enjoys good performance, with most parameter
settings offering both sensitivity and specificity above 70% (and often
much higher). For the simulations without indels, we find that sensitivity
increases with the number of recombinations, sequence length, and
mutation rate, while staying stable with respect to the other parameters.
Specificity decreases (usually slightly) as the proportion of recombinant
sequences, number of recombinations, sequence length, and mutation rate
increase.

An important feature of our method is its ability to accept unaligned
sequences as input. When we include indels in the generating process, we
can see (Figure 2) that both sensitivity and specificity remain relatively
unaffected, with a moderate decline in specificity as indel rate increases.
This indicates that our method is robust to indels even when the indel rate
is large.

We also compared our method with a number of popular recombinant
detection methods, after aligning the simulated sequences. We note that
these methods only accept aligned sequences, making a direct comparison
potentially biased one way or the other (depending on whether the
sequences have indels or not). Despite this, we can see (Figure 3) that
our method enjoys the highest sensitivity overall when we matched the
specificity of other methods to that of our method, whether or not indels
are included in the sequences. For more details, see Supplementary Section
2.2.

Finally, we studied the distributions of the support values for true and
false detections, and the accuracy of the JHMM methods in our simulations
(Supplementary Sections 2.3 and 2.4).
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Table 1. Proportions of recombinations from the same ups groups and
DBLα subclasses. Expected proportions are given in brackets. All p-values
are highly significant (< 2.2× 10−16) except for the entry marked in red
(p = 0.2734).

Parent-child Parents Family

UpsA vs. upsB/C 99.7% (92.5%) 98.9% (85.0%) 98.5% (85.0%)

UpsA, B and C 85.3% (75.4%) 65.5% (50.9%) 51.1% (50.9%)

DBLα 58.8% (53.9%) 31.0% (7.9%) 20.6% (7.9%)

3.2 Analysis of DBLα sequences from a cross-sectional
study in Ghana

Population genetic studies of var genes have focused on sequencing the
DBLα domain, since nearly all var genes encode a single DBLα domain.
We applied our method to detect recombinants and breakpoints in a dataset
of DBLα sequences collected from individuals with microscopically
confirmed P. falciparum infections (isolates) living in the Bongo District,
in the Upper East region of northern Ghana (GenBank BioProject Number:
PRJNA396962) (He et al., 2018; Pilosof et al., 2019). This dataset consists
of 35,591 previously published DBLα sequences collected from 161
isolates, which were clustered into 17,335 representative DBLα ‘types’ of
average length 125aa (s.d. 8.4aa). Of these, we detected 14,801 (85.4%)
to be recombinant. See Supplementary Section 3.1 for more details.

3.2.1 DBLα sequences from the same ups group recombine more
frequently

The upstream promoter sequences of each var gene can be classified into
three main ups groups, upsA, upsB, and upsC (Rask et al., 2010). Earlier
studies on a much smaller dataset (Kraemer et al., 2007), based on sequence
similarity, proposed that var gene recombination preferentially occurs
within the same ups group. Using our method, which to our knowledge
is the first systematic attempt to detect recombinants in var genes in
natural parasite populations, we found considerable evidence supporting
this hypothesis. Our results are summarised in Table 1.

We calculated the proportion of recombination triples which have
one parent and the child, both parents, and both parents and the child
belonging to the same ups group (‘Parent-child’, ‘Parents’, and ‘Family’
in Table 1). With one exception, we found that the parents and/or the child
of a recombination were significantly more likely (p < 2.2×10−16 from
χ2 tests) to belong to the same ups group, compared to a (conservative)
null model where the parents have independent groups, but the child shares
the group of one of its parents. (Under a more liberal model where the child
group is also independent, all p-values are highly significant.) Our results
strongly reinforce the conclusions of earlier studies, and provide more
precision with the division into three ups groups.

We also considered the proportions of identified recombinants in
each ups group. We found that there was a significant difference in the
proportions of recombinants in the three groups (p = 2.193×10−7 from
a χ2 test), with upsA having the least proportion of recombinants, and
upsC the most (82.3%, 84.9%, and 87.6% from A, B, and C respectively).

3.2.2 Proportions of recombination differ among domain subclasses
DBLα sequences can also be classified according to sequence similarity
into 33 subclasses (DBLα0.1–24, DBLα1.1–8, DBLα2). These
subclasses are strongly associated with ups groups; however, they also
provide greater resolution in dividing the sequences. We thus repeated our
earlier analyses with regards to the subclasses. As with ups group, we
found a significant (all p < 2.2 × 10−16) increase in recombinations
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Fig. 4. Proportions (and 95% confidence intervals) of recombinants for each DBLα
subclass. Subclasses which are significantly different from the overall average (under a
correction for multiple testing) are highlighted in red. The horizontal dashed line displays
the overall proportion of recombinant sequences in the entire dataset.

with one parent and the child, both parents, and both parents and the child
from the same domain subclass (Table 1).

We next considered the proportions of identified recombinants in each
subclass (Figure 4). We identified seven subclasses (DBLα0.1, 5 and 11
were too high, while DBLα0.3, 8, 9 and 23 were too low) which were
significantly different from the average under a Bonferroni correction
for multiple testing. Of particular note is the DBLα0.1 subclass, which
has been noted to involve more recombinations than other subclasses
(Claessens et al., 2014). We suggest that these subclasses should be
explored further to determine if there are some biological factors that may
explain these results.

We also investigated the proportion of recombinants among individual
isolates, and among the two broad catchment areas in the Bongo District
(Soe and Vea/Gowrie) that the isolates were collected from. We did not
detect any significant differences here (see Supplementary Section 3.2).

3.2.3 Non-recombinant DBLα types are more conserved than
recombinant types

It is well known (Ruybal-Pesántez et al., 2017; Rougeron et al., 2017) that
some DBLα types are highly conserved (appear in many different isolates)
in a population (or even globally, Tonkin-Hill et al., 2021). On the other
hand, many other types only appear rarely, or even once. We hypothesise
that non-recombinant types are more “stable” than recombinants, and thus
may be more highly conserved.

We investigated this hypothesis via the recombinants identified by our
method. Firstly, we compared the observed frequencies in the dataset of the
recombinants to the non-recombinants; we found that non-recombinants
occurred significantly more often (average 4.2 vs. 3.7, p = 0.021 from a
Wilcoxon rank sum test).

We also considered if there is a difference in the proportions of
frequent DBLα types in recombinants and non-recombinants. As the
frequencies of types are highly right-skewed (see Supplementary Figure
S19), we thresholded the frequencies at various levels to determine if
there were particular frequencies where an effect could be noticed. The
results are in Table 2. We found that for a threshold frequency of 5, there
were significantly fewer frequent recombinants than non-recombinants;
however, this effect becomes less noticeable for larger thresholds. This
suggests that there is a high proportion of recombinants which appear
very few times in the dataset; these are potentially relatively recent
recombinants, which may have not been established in the population.

3.2.4 Breakpoint positions are associated with homology blocks
It is known that a number of semi-conserved homology blocks (HBs)
occur frequently in var genes (Rask et al., 2010). These HBs recombine
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Table 2. Proportions of frequent (larger than the
threshold) recombinant and non-recombinant DBLα
types.

Threshold 5 10 15 20

Recombinants 17.5% 4.5% 2.1% 1.3%

Non-recombinants 21.0% 6.0% 2.3% 1.6%

P -value (χ2 test) 0.006 0.047 0.666 0.634
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Fig. 5. Positions of recombination breakpoints. (Top) The histogram of relative
breakpoint positions of recombinations. (Bottom) The position of the most common
homology blocks, with circle size proportional to frequency. The three most frequent
homology blocks (HB5, 14, and 36) are highlighted in blue.

at exceedingly high rates (Freitas-Junior et al., 2000; Taylor et al., 2000),
and are known to be useful in predicting disease severity (Rorick et al.,
2013). We thus investigated the patterns of recombination in DBLα types
in relation to these homology blocks.

The positions of recombination breakpoints, as found by the JHMM
method, are shown in Figure 5. Of particular note is:

• The recombination rate is not constant throughout the sequence, but
displays three distinct peaks spaced in roughly equal intervals. These
peaks clearly correspond to the three most frequent homology blocks,
HB5, 14, and 36, with the height of the peak also corresponding to the
frequency of the HB.

• The frequency of breakpoints drops sharply towards either end of
the sequence. This is an artifact of the method and does not imply
that the recombination rate is lower there; we cannot recognise a
recombination which is close to one end of the sequence.

This reinforces the biological theory that recombination occurs within
short identical segments (Sander et al., 2013).

4 Discussion
In this paper, we have developed a statistical method to detect recombinant
sequences from a large set of genetic sequences without requiring a

multiple alignment or a reference panel. We can also assess the reliability
of the inferred recombinants with a bootstrapping-based tool. Simulations
show that our method performs very well even when there is a high
recombination rate, long sequences, or a large dataset. Crucially, it
maintains its accuracy in the presence of insertions and deletions, where
methods that require an alignment would normally fail. In a study of
DBLα domains of var genes, comparisons between recombinant and non-
recombinant DBLα types reveal a series of biologically meaningful results;
we find evidence for the hypothesis that recombination is more frequent
within ups groups, but also find that it is more frequent within domain
subclasses. We also find novel results that recombinants differ from non-
recombinants both in their representation in domain subclasses, and in
their levels of conservation.

While our method is not strictly an alignment-free tool, it carries several
advantages over methods based on a full multiple sequence alignment. Our
method mostly aligns segments which are closely related to each other,
thus increasing the reliability of the alignments; as datasets increase in
size and variability, it will become more difficult to construct a reliable
full alignment for all sequences. Moreover, our method only attempts to
align three sequences at once, again saving time and increasing reliability.
By identifying recombination triples directly from the JHMM, our method
also avoids having to examine all possible triples of sequences one by one.

As noted above, our method is designed to only detect recent
recombinants, which have not yet diverged in the dataset. For example,
if a more ancient recombination produces a lineage that diverges into
two sequences, they will be preferentially matched to each other by the
JHMM, and it is possible that no recombination will be detected. The initial
clustering of DBLα tags into types at 96% similarity (a standard part of
the preprocessing pipeline) may help in this regard, as the lineages must
diverge beyond this threshold to be distinguished. The use of different
clustering thresholds may affect the results, potentially unlocking access
to signals of older recombinations.

Note that it is uncertain how long a recombinant will remain recent
for, and this may well depend on sampling coverage and sample size. For
example, although recombination events have been reported on timescales
of several years (Claessens et al., 2014), a recombinant may continue to
be ‘recent’ for far longer than that. The Ghana dataset studied in this
paper is the first of a longitudinal dataset collected over several seasons,
which may give insight into the frequency and patterns of recombination
on epidemiological timescales; this is the subject of current work.

Furthermore, there is an implicit assumption that recombinations do
not ‘interact’ with each other, i.e., that they are sufficiently far apart either
in the evolutionary network or in the genome that we can decompose the
dataset into recombinant triples and assess those independently. This is
a strong (and perhaps unrealistic, in the context of genes which have a
high recombination rate) assumption which we make in order to obtain a
tractable algorithm. As seen from our results, we do appear to obtain good
accuracy with our detections even in cases where this assumption might
not hold; assessing the exact impact of this assumption on our results is
also the subject of future work.

Although our methods are motivated primarily by the highly
recombinant var genes, our approach is not restricted to these genes, but
could be used for any genes which are recombinant but lack a reliable
alignment or reference panel. The scalability of our method means that it
will be applicable even to large datasets, thus holding great promise for
broader applications.
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