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Abstract
In the past decade, robust principal component analysis (RPCA) and low-rank matrix
completion (LRMC), as two very important optimization problems with the view of
recovering original low-rank matrix from sparsely and highly corrupted observations
or a subset of its entries, have already been successfully adopted in image denoising,
video processing, web search, biological information, etc. This paper proposes an
efficient and effective algorithm, named the alternating direction and step size min-
imization (ADSM) algorithm, which employs the alternating direction minimization
idea to solve the general relaxed model that can describe small noise (e.g., Gaus-
sian noise). The coupling of sparse noise and small noise makes low-rank matrix
recovery more challenging than that of RPCA. We make use of Taylor expansion,
singular value decomposition and shrinkage operator as the alternating direction min-
imization method to deduce iterative direction matrices. A continuous technology is
incorporated into ADSM to accelerate convergence. Similarly, the Taylor expansion
and step size minimization (TESM) algorithm for LRMC is designed by the above
way, but the alternating direction minimization idea needs to be ruled out since there
is not a sparse matrix in it. Theoretically, it is proved that the two algorithms globally
converge to their respective optimal points based on some conditions. The numer-
ical results are reported, illustrating that ADSM and TESM are quite efficient and
effective for recovering large-scale low-rank matrix problems at many cases.
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1 Introduction

1.1 Problems andmodels

Suppose that a large data matrix D ∈ Rm×n is given and we know that it may be
decomposed as a low-rank matrix A ∈ Rm×n and a sparse matrix E ∈ Rm×n, namely,
D =A+E, but we do not know the low-dimensional column and row spaces of A, even
their dimensions. Moreover, the locations and the number of non-zero entries of E are
also unknown. Our main purpose is to recover the low-rank and sparse components
both accurately and efficiently. This problem named robust principal component
analysis (RPCA) has intensively involved in the fields of face recognition [1], video
processing [2], latent semantic indexing [3], ranking and collaborative filtering [4]
and so on, whose data have routinely increased to thousands or even billions of
dimensions. Let us use video surveillance as an example to specify the optimization
problem. If a sequence of surveillance video’s frames are given, active components
often need to be identified from the background, namely, active and background com-
ponents would be separated. We can arrange all the video’s frames into columns
which form the data matrix D. The low-rank component A naturally corresponds to
the stationary background and the sparse component E denotes the active objects.

The low-rank matrix A and the sparse matrix E are described by two models:
the nuclear norm minimization min ||A||∗ [5, 6] and the l1-norm minimization
min ||E||1 [7, 8] respectively, where ||A||∗ is the sum of the singular values of A and
||E||1 is the sum of the absolute values of all entries of E. In 2009, Wright et al. [1]
combined min ||A||∗ and ||E||1 with γ = 1/

√
max(m, n) [2] as a tractable form (1)

which was the classical convex optimization model of RPCA.

min
A,E

||A||∗ + γ ||E||1, s.t . D = A + E. (1)

The model (1) enables to correctly recover underlying low-rank structure in the presence
of gross errors or outlying observations, or identify underlying sparse structure from the
background.

A low-rank matrix A is contaminated by both sparse noise matrix E and
small noise matrix N (e.g., Gaussian noise), namely, the observation data matrix
D=A+E+N, so it becomes a major concern problem how to recover A from D.

This paper focuses on the following general convex relaxed structured minimiza-
tion of the classical model (1) in the RPCA field:

min
A,E

F (A,E) = min
A,E

f (A, E) + μ(||A||∗ + γ ||E||1), (2)

where f : (Rm×n, Rm×n) → R is a bivariate bounded continuous differentiable
function, and the parameter μ > 0 is used to trade off f (A, E) and ||A||∗ + γ ||E||1
for minimization. Given its structure, the term 0.5||D−A−E||2F for describing small
noise can be regarded as a special case of the general smooth function f (A, E).
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Recovering a rectangular matrix from a subset of its entries is known as matrix
completion [9]. If there are not any additional conditions, the issue is apparently ill
due to obtaining infinite solutions from few conditions. In many applications, we
hope to recover a low-rank or approximate low-rank matrix with very limited infor-
mation [9], for instance, the famous Netflix recommended system [4]: users only rate
a few items, but one would like to infer their preferences from the incomplete rating
matrix. The Netflix data matrix of all user-ratings may be approximately low-rank
because it is commonly believed that only a few factors, such as subjects, directors,
actors and so forth, contribute to anyone’s taste or preference. The similar low-rank
recovery problem with incomplete data is named low-rank matrix completion (LRMC)
that is also applied to many other practical problems, such as system identification
[10], remote sensing [11], video denoising [12], and illumination compensation [13].

In 2010, Recht et al. [5] showed that if a certain restricted isometry property held
for the linear transformation defining the constraints, the solution about LRMC could
be recovered by solving the model (3), which was the most classical and popular
model in the LRMC field.

min ||A||∗, s.t . P�(A) = P�(D), (3)

where P�(·) denotes an orthogonal projector onto the span of matrix vanishing out-
side of �, in other words, if (i, j) ∈ �, the (i, j)th entry of P�(A) is Aij , otherwise,
it is zero. The model (3) means how we recover the low-rank matrix A when the sub-
set P�(A) of A has been known (P�(A) = P�(D)). We try to solve the following
general relaxed structured minimization (4) of the model (3):

minF(A) = min f (A) + μ||A||∗, (4)

where 0.5||P�(A) − P�(D)||2F for describing small noise can be seen as a special
case of f (A).

1.2 Existing algorithms

In the aspect of RPCA, the off-the-shelf interior point methods can be applied to
solve the semidefinite program [14] reformulated as the model (1). They show some
effectiveness, but only in handling small-scale matrix whose size is n×n (n ≤ 100),
due to its high-order complexity O(n6) where n is the order of a square matrix. In
pattern recognition, the sizes of matrices are so huge that the interior point methods
have not satisfied the demand of many practical applications due to depending on
the second-order information of the objective function essentially. Wright et al. [1] in
2009 presented the iterative thresholding (IT) algorithm, with only O(n3) complex-
ity, relying on the first-order information for solving the model (1). It can compensate
for the drawback that the interior point methods hardly solve large-scale matrix prob-
lems, but it converges slowly, resulting in needing much more time. At the same
year, Lin et al. [15] developed a complementary method: accelerated proximal gradi-
ent (APG). This algorithm still depends on the first-order information for solving the
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model (2). It is faster and more scalable than IT by combining with a continuation
technique, which can remove small noise in theory. Then, Lin et al. proposed that the
augmented Lagrange multiplier method could be applied to solve the model (1) that
didn’t describe small noise. Although some people presented the other models with-
out nuclear norm and the corresponding algorithms, the models were non-convex and
the algorithms were not very robust in many cases and not globally convergent.

In the aspect of LRMC, in order to overcome the narrow limitation of interior
point methods in terms of matrix size, Cai et al. [9] in 2010 presented the singu-
lar value thresholding (SVT) algorithm that shrank the singular values of a sparse
matrix at each iteration. It cannot usually recover the matrices that have moderate or
high rank efficiently. Considering the problems about both rank and size, Ma et al.
in 2011 proposed a linear time approximate singular value decomposition based on
fixed point continuation algorithm (FPCA) [16] that made use of an operator splitting
technology and synthesized Bregman iterative algorithm, FPC algorithm and linear
time approximate SVD [17]. Compared to SVT, FPCA is in the ascendant in terms of
time and robustness. Inspired by the fast iterative shrinkage thresholding algorithm
for linear inverse problems [18], Toh et al. [19] developed the APGL algorithm with
a linesearch-like technology, which had the better iteration complexity than that of
SVT and FPCA. The two algorithms APGL and FPCA for solving the model (4)
can remove small noise to a certain extent. Further, Lin et al. used the augmented
Lagrange multiplier method to solve the model (3) that didn’t also describe small
noise. Some researchers proposed the other models without nuclear norm, but they
were non-convex, so the corresponding algorithms were not robust in many cases and
not globally convergent.

Despite such exciting developments in the RPCA and LRMC fields, the current
existing algorithms still lose some efficiency and effectiveness for large-scale matrix
problems when removing small noise in some situations. Therefore, it is necessary to
propose more exciting algorithms for the denoising problem in above fields.

1.3 Contributions and organization

The main contributions of this paper are as follows. We propose an algorithm named
the alternating direction and step size minimization (ADSM) algorithm that uses
the alternating direction minimization idea to solve the general relaxed model (2)
in the RPCA field. This paper uses Taylor expansion, SVD, shrinkage operator, and
so forth to deduce iterative direction matrices of the low-rank matrix and the sparse
matrix. By combining this idea with the direction step size formula, we update the
direction matrices and the corresponding step sizes alternately. The Taylor expansion
and step size minimization (TESM) algorithm for LRMC is designed by the simi-
lar way without the alternating direction minimization idea. We prove their global
convergence based on some conditions. Experimentally, compared with the current
existing algorithms, the two proposed algorithms are very promising in running time,
computational accuracy, robustness, etc. in some situations.

The rest of this paper is organized as below. In Section 2, we deduce the iterative
direction matrices of the low-rank matrix and the sparse matrix. The basic steps of
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ADSM and TESM are established respectively. In Section 3, it is given that the global
convergence theorems in some conditions. In Section 4, we conduct some experi-
ments to show the efficiency and effectiveness of the two algorithms. This paper is
concluded briefly in the last section.

2 Algorithm analysis

This paper inspired by the non-monotone Barzilai-Borwein gradient algorithm [20]
in the compressed sensing field proposes the two algorithms: ADSM for RPCA and
TESM for LRMC. By combining the direction step size formulasAk+1 = Ak+αkMk

and Ek+1 = Ek + βkNk with the alternating direction minimization idea [21], we
deduce the two direction matrices Mk and Nk . After the two corresponding step sizes
αk and βk are given, the next iterative matrices Mk and Nk can be computed easily.

The soft-thresholding operator belongs to the proximity operator whose details
can be found in [22]. Theorem 1 about it, which has been introduced in [9], is used
to support the derivation process of Mk .

Theorem 1 Let A ∈ Rm×n be a low-rank matrix, Dτ (·) be the soft-threshold oper-
ator and Sτ (·) be the shrinkage operator: Sτ (x) = max{|x| − τ, 0}(x/|x|) where τ

is a positive threshold value. The SVD of Q ∈ Rm×n is U�V T where U ∈ Rm×r ,
� ∈ Rr×r and V ∈ Rn×r are the left orthogonal matrix, the singular matrix and the
right orthogonal matrix respectively. Then, the following expression holds.

A = argmin
A

0.5||A − Q||2F + τ ||A||∗ = Dτ (Q) = USτ (�)V T .

At the kth iteration, we see Ak and Ek as the known matrices, and retain the first
three terms of Taylor expansion of f (Ak +M) at Ak and the first two terms of Taylor
expansion of ||Ak + M||∗ at Ak . The first-order derivative form of ||Ak + M||∗ at Ak

has three new unknown matrices due to the unknown matrix M . The difficulty can be
overcome by approximated form of derivative definition. Specifically, the expanded
form of F(Ak + M) at Ak is as follows:

F(Ak + M)

= f (Ak + M) + μ(||Ak + M||∗ + γ ||Ek||1)
≈ f (Ak) + 〈∇f (Ak), M〉 + λk

2
||M||2F + μγ ||Ek||1 + μ(||Ak||∗

+ ||Ak + hM||∗ − ||Ak||∗
h

)

� Pk(M),

(5)

where both h and λk are small positive numbers and

〈∇f (Ak), M〉 = trace(∇f (Ak)
T M).
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Ak + hMk

= arg min
Ak+hM

Pk(M)

= arg min
Ak+hM

〈∇f (Ak), M〉 + λk

2
||M||2F + μ

h
||Ak + hM||∗

= arg min
Ak+hM

h2

λk

(〈∇f (Ak), M〉 + λk

2
||M||2F + μ

h
||Ak + hM||∗)

= arg min
Ak+hM

1

2
〈Ak + hM − (Ak − h

λk

∇f (Ak)), Ak + hM − (Ak − h

λk

∇f (Ak))〉

+ μh

λk

||Ak + hM||∗

= arg min
Ak+hM

1

2
||Ak + hM − (Ak − h

λk

∇f (Ak))||2F + μh

λk

||Ak + hM||∗

= Dμh
λk

(Ak − h

λk

∇f (Ak)),

where the last equality is supported by Theorem 1, so the formula (6) of Mk can be
obtained.

Mk = 1

h
[Dμh

λk

(Ak − h

λk

∇f (Ak)) − Ak]. (6)

Lemma 1 shows that the function L(h) approaches the first-order term of Taylor
expansion of ||A + M||∗ at A decreasingly and avoids appearing mutation as h > 0
decreases. In addition, Lemma 1 supports the proof of Theorem 2.

Lemma 1 For any two matrices A, M ∈ Rm×n , the function L(h) increases
monotonously as h increases.

L(h) = ||A + hM||∗ − ||A||∗
h

, h ∈ (0, +∞).

Proof For ∀h1, h2 ∈ (0, +∞) and h1 < h2,

L(h1) − L(h2)

= ||A + h1M||∗ − ||A||∗
h1

− ||A + h2M||∗ − ||A||∗
h2

= h2||A + h1M||∗ − h2||A||∗ − h1||A + h2M||∗ + h1||A||∗
h1h2

= ||h2A + h1h2M||∗ − ||h1A + h1h2M||∗ + (h1 − h2)||A||∗
h1h2

= ||h1A + h1h2M + h2A − h1A||∗ − ||h1A + h1h2M||∗ + (h1 − h2)||A||∗
h1h2

≤ ||h1A + h1h2M||∗ + ||h2A − h1A||∗ − ||h1A + h1h2M||∗ + (h1 − h2)||A||∗
h1h2

= 0,

namely, L(h1) ≤ L(h2), so L(h) increases monotonously as h increases.
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Theorem 2 shows that the direction matrix Mk defined by the formula (6) is
descent if Mk 
= 0.

Theorem 2 Suppose that λk > 0 and the direction matrix Mk is defined by the
formula (6). Then, ∃θ ∈ (0, h] such that

F(Ak + θMk) ≤ F(Ak)+ θ(〈∇f (Ak), Mk〉+ μ||Ak + hMk||∗ − μ||Ak||∗
h

)+ o(θ),

(7)
and

〈∇f (Ak), Mk〉 + μ||Ak + hMk||∗ − μ||Ak||∗
h

≤ −λk

2
||Mk||2F . (8)

Proof By differentiability of the smooth function f (·) and convexity of ||A||∗, it can
be shown that for ∀θ ∈ (0, h], namely, ∀θ/h ∈ (0, 1],

F(Ak + θMk) − F(Ak)

= f (Ak + θMk) − f (Ak) + μ||Ak + θMk||∗ − μ||Ak||∗ + μγ ||E||1 − μγ ||E||1
= f (Ak + θMk) − f (Ak) + μ||θ

h
(Ak + hMk) + (1 − θ

h
)Ak||∗ − μ||Ak||∗

≤ f (Ak + θMk) − f (Ak) + μθ

h
||Ak + hMk||∗ + μ(1 − θ

h
)||Ak||∗ − μ||Ak||∗

= f (Ak) + 〈∇f (Ak), θMk〉 + o(θ) − f (Ak) + μθ

h
||Ak + hMk||∗ + μ||Ak||∗

− μθ

h
||Ak||∗ − μ||Ak||∗

= θ〈∇f (Ak), Mk〉 + μθ

h
||Ak + hMk||∗ − μθ

h
||Ak||∗ + o(θ).

So the inequality (7) is proved.
Note that Mk is the minimizer of the expression (5) and θ ∈ (0, h]. By (5) and

convexity of ||A||∗,
〈∇f (Ak), Mk〉 + λk

2
||Mk ||2F + μ||Ak + hMk ||∗ − μ||Ak ||∗

h

≤ θ〈∇f (Ak), Mk〉 + λkθ
2

2
||Mk ||2F + μ

h
||Ak + θhMk ||∗ − μ

h
||Ak ||∗

= θ〈∇f (Ak), Mk〉 + λkθ
2

2
||Mk ||2F + μ

h
|| θ

h
Ak + θhMk + Ak − θ

h
Ak ||∗ − μ

h
||Ak ||∗

≤ θ〈∇f (Ak), Mk〉 + λkθ
2

2
||Mk ||2F + μθ

h2
||Ak + h2Mk ||∗ + μ

h
(1 − θ

h
)||Ak ||∗ − μ

h
||Ak ||∗,

so

(1 − θ)〈∇f (Ak), Mk〉 + μ

h
||Ak + hMk||∗ − μθ

h2
||Ak + h2Mk||∗

− μ

h
(1 − θ

h
)||Ak||∗ ≤ −λk

2
(1 − θ2)||Mk||2F .

(9)
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The last three terms of the left side of the inequality in (9) can be arranged as

μ

h
||Ak + hMk||∗ − μθ

h2
||Ak + h2Mk||∗ − μ

h
(1 − θ

h
)||Ak||∗

= μ

h
(||Ak + hMk||∗ − ||Ak||∗ − θ

||Ak + h2Mk||∗ − ||Ak||∗
h

)

= μ

h
(||Ak + hMk||∗ − ||Ak||∗ − θh

||Ak + h2Mk||∗ − ||Ak||∗
h2

)

≥ μ

h
(||Ak + hMk||∗ − ||Ak||∗ − θh

||Ak + hMk||∗ − ||Ak||∗
h

)

= μ

h
(||Ak + hMk||∗ − ||Ak||∗ − θ ||Ak + hMk||∗ + θ ||Ak||∗)

= μ

h
(1 − θ)(||Ak + hMk||∗ − ||Ak||∗) ,

(10)

where the inequality is supported by Lemma 1. By combining (9) with (10), we get
the inequality

(1 − θ)〈∇f (Ak), Mk〉 + μ

h
(1 − θ)(||Ak + hMk ||∗ − ||Ak ||∗) ≤ −λk

2
(1 − θ2)||Mk ||2F ,

namely,

〈∇f (Ak), Mk〉 + μ

h
(||Ak + hMk ||∗ − ||Ak ||∗) ≤ −λk

2
(1 + θ)||Mk ||2F ≤ −λk

2
||Mk ||2F ,

so the inequality (8) is also proved.

Theorem 3 about the shrinkage operator, which has been introduced in [15], is
used to support the derivation process of Nk .

Theorem 3 Let τ be a positive shrinkage thresholding, E ∈ Rm×n be a sparse
matrix, Sτ (·) be the shrinkage operator and Q ∈ Rm×n. Then,

E = argmin
E

0.5||E − Q||2F + τ ||E||1 = Sτ (Q).

At the kth iteration, we see Ak+1 and Ek as the known matrices and retain the
first three terms of Taylor expansion of f (Ek + N) and the first two terms of Taylor
expansion of ||Ek +N ||1 at Ek . The first-order derivative form of ||Ek +N ||1 can be
replaced by an approximated form of derivative definition due to non-differentiability
of || · ||1. The expanded form of F(Ek + N) at Ek is as follows:

F(Ek + N)

= f (Ek + N) + μ(||Ak+1||∗ + γ ||Ek + N ||1)
≈ f (Ek) + 〈∇f (Ek), N〉 + ρk

2
||N ||2F + μ||Ak+1||∗ + μγ (||Ek||1

+ ||Ek + gN ||1 − ||Ek||1
g

)

� Qk(N),

(11)
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where both g and ρk are small positive numbers.

Ek + gNk

= arg min
Ek+gN

Qk(N)

= arg min
Ek+gN

〈∇f (Ek), N〉 + ρk

2
||N ||2F + μγ

g
||Ek + gN ||1

= arg min
Ek+gN

g2

ρk

(〈∇f (Ek), N〉 + ρk

2
||N ||2F + μγ

g
||Ek + gN ||1)

= arg min
Ek+gN

1

2
〈Ek + gN − (Ek − g

ρk

∇f (Ek)), Ek + gN − (Ek − g

ρk

∇f (Ek))〉

+ γμg

ρk

||Ek + gN ||1

= arg min
Ek+gN

1

2
||Ek + gN − (Ek − g

ρk

∇f (Ek))||2F + γμg

ρk

||Ek + gN ||1

= S γμg
ρk

(Ek − g

ρk

∇f (Ek)),

where the last equality is supported by Theorem 3, so the formula (12) of Nk

can be obtained.

Nk = 1

g
[S γμg

ρk

(Ek − g

ρk

∇f (Ek)) − Ek]. (12)

Lemma 2 shows that the function L(g) decreasingly approaches the first-order
term of Taylor expansion of ||Ek + N ||1 at Ek and avoids appearing mutation as g

decreases. Furthermore, Lemma 2 supports the proof of Theorem 4.

Lemma 2 For any two matrices E,N ∈ Rm×n , the function L(g) increases
monotonously as g increases.

L(g) = ||E + gN ||1 − ||E||1
g

, g ∈ (0, +∞).

Proof For ∀g1, g2 ∈ (0, +∞) and making g1 < g2,

L(g1) − L(g2)

= ||E + g1N ||1 − ||E||1
g1

− ||E + g2N ||1 − ||E||1
g2

= g2||E + g1N ||1 − g2||E||1 − g1||E + g2N ||1 + g1||E||1
g1g2

= ||g2E + g1g2N ||1 − ||g1E + g1g2N ||1 + (g1 − g2)||E||1
g1g2

= ||g1E + g1g2N + g2E − g1E||1 − ||g1E + g1g2N ||1 + (g1 − g2)||E||1
g1g2

≤ ||g1E + g1g2N ||1 + ||g2E − g1E||1 − ||g1E + g1g2N ||1 + (g1 − g2)||E||1
g1g2

= 0,

namely, L(g1) ≤ L(g2), so L(g) increases as g increases.
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Theorem 4 shows that the direction matrix Nk defined by the formula (12) is
descent if Nk 
= 0.

Theorem 4 Suppose that ρk > 0 and the direction matrix Nk is defined by the
formula (12). Then, ∃η ∈ (0, g] such that

F(Ek + ηNk)

≤ F(Ek) + η(〈∇f (Ek), Nk〉 + μγ ||Ek + gNk||1 − μγ ||Ek||1
g

) + o(η),
(13)

and

〈∇f (Ek), Nk〉 + μγ ||Ek + gNk||1 − μγ ||Ek||1
g

≤ −ρk

2
||Nk||2F . (14)

Proof By differentiability of f (·) and convexity of ||E||1, it can be shown that for
∀η ∈ (0, g], namely, ∀η/g ∈ (0, 1],

F(Ek + ηNk) − F(Ek)

= f (Ek + ηNk) − f (Ek) + μ||Ak+1||∗ − μ||Ak+1||∗ + μγ ||Ek + ηNk ||1 − μγ ||Ek ||1
= f (Ek + ηNk) − f (Ek) + μγ ||η

g
(Ek + gNk) + (1 − η

g
)Ek ||1 − μγ ||Ek ||1

≤ f (Ek) + 〈∇f (Ek), ηNk〉 + o(η) − f (Ek) + μγη

g
||Ek + ηNk ||1 + μγ ||Ek ||1

− μγη

g
||Ek ||1 − μγ ||Ek ||1

= η〈∇f (Ek), Nk〉 + o(η) + μγη

g
||Ek + ηNk ||1 − μγη

g
||Ek ||1,

so the inequality (13) is proved.
Note that Nk is the minimizer of the form (11) and η ∈ (0, g]. By (11) and

convexity of ||E||1,
〈∇f (Ek), Nk〉 + ρk

2
||Nk ||2F + μγ ||Ek + gNk ||1 − μγ ||Ek ||1

g

≤ η〈∇f (Ek), Nk〉 + ρkη
2

2
||Nk ||2F + μγ

g
||Ek + ηgNk ||1 − μγ

g
||Ek ||1

= η〈∇f (Ek), Nk〉 + ρkη
2

2
||Nk ||2F + μγ

g
||η

g
Ek + ηgNk + Ek − η

g
Ek ||1 − μγ

g
||Ek ||1

≤ η〈∇f (Ek), Nk〉 + ρkη
2

2
||Nk ||2F + μγ

g
||η

g
Ek + ηgNk ||1 + μγ

g
(1 − η

g
)||Ek ||1 − μγ

g
||Ek ||1

= η〈∇f (Ek), Nk〉 + ρkη
2

2
||Nk ||2F + μγ

g
||η

g
Ek + ηgNk ||1 − μγη

g2
||Ek ||1,

so

(1 − η)〈∇f (Ek), Nk〉 + μγ

g
||Ek + gNk||1 − μγη

g2
||Ek + g2Nk||1

− μγ

g
(1 − η

g
)||Ek||1 ≤ −ρk

2
(1 − η2)||Nk||2F .

(15)
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The last three terms of the left side of the inequality in (15) can be arranged as

μγ

g
[||Ek + gNk||1 − η

g
||Ek + g2Nk||1 − (1 − η

g
)||Ek||1]

= μγ

g
[||Ek + gNk||1 − ||Ek||1 − ηg

||Ek + g2Nk||1 − ||Ek||1
g2

]

≥ μγ

g
[||Ek + gNk||1 − ||Ek||1 − ηg

||Ek + gNk||1 − ||Ek||1
g

]

= μγ

g
[||Ek + gNk||1 − ||Ek||1 − η||Ek + gNk||1 + η||Ek||1]

= μγ

g
[(1 − η)||Ek + gNk||1 − (1 − η)||Ek||1]

= μγ

g
(1 − η)(||Ek + gNk||1 − ||Ek||1),

(16)

where the inequality is supported by Lemma 2. By combining (15) with (16), we get
the inequality

(1−η)〈∇f (Ek), Nk〉+ μγ

g
(1−η)(||Ek +gNk||1−||Ek||1) ≤ −ρk

2
(1−η2)||Nk||2F ,

namely,

〈∇f (Ek), Nk〉+ μγ

g
(||Ek +gNk||1−||Ek||1) ≤ −ρk

2
(1+η)||Nk||2F ≤ −ρk

2
||Nk||2F ,

so the inequality (14) is also proved.

The large values μh/λk in (6) and γμg/ρk in (12) are desired to shrink singu-
lar values and all entries of matrix respectively. Hale et al. [23] use a continuation
technology (17) to dynamically adjust μ for accelerating convergence. They define
a decreasing sequence {μk}, as opposed to fixing the two terms μ̄h/λk and γ μ̄g/ρk .
When the model (2) associated with the next μk+1 is to be solved, the approximate
solution (A(μk), E(μk)) about the current μk is used as the starting point in the iter-
ation. In fact, this framework approximately follows the path (A(μ), E(μ)) in the
interval [μ̄, μ0].

μk+1 = max{τμk, μ̄}, k = 0, 1, 2, . . . , L − 1. (17)

According to all the above derivations, the basic steps of ADSM are designed as
Algorithm 1 based on the alternating direction minimization idea. Similarly, TESM
is also proposed by the way, but the idea is not adopted due to non-existing sparse
matrix and the formula (6) of the direction matrix is deduced from the model (4)
instead of (2). Its basic steps are designed as Algorithm 2.
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Algorithm 1 Alternating Direction and Step Size Minimization

Step 0: Initialization. The initial point (A0, E0), the initial parameter μ0 > 0, the
constant τ > 1 and the stopping threshold tol > 0 are given. Set the iteration k = 0.
Step 1: Stopping criterion. If ||D −Ak+1 −Ek+1||F /||D||F < tol, stop; otherwise,
continue.
Step 2: Compute the direction matrix Mk of Ak by (6).
Step 3: Select the optimal step size αk of Ak .
Step 4: Update the low-rank matrix Ak+1 = Ak + αkMk .
Step 5: Compute the direction matrix Nk of Ek by (12).
Step 6: Select the optimal step size βk of Ek .
Step 7: Update the sparse matrix Ek+1 = Ek + βkNk .
Step 8: Update the penalty parameter μk+1 by (17).
Step 9: Loop. Let k = k + 1. Go to Step 1.
Step 10: Output. (Â, Ê) = (Ak+1, Ek+1).

Algorithm 2 Taylor Expansion and Step Size Minimization

Step 0: Initialization. The initial point A0, the initial parameter μ0 > 0, the constant
τ > 1 and the stopping threshold tol > 0 are given. Set the iteration k = 0.
Step 1: Stopping criterion. If ||Ak+1 − Ak||F /||Ak||F < tol, stop; otherwise,
continue.
Step 2: Compute the direction matrix Mk of Ak by (6) .
Step 3: Select the optimal step size αk of Ak .
Step 4: Update the low-rank matrix Ak+1 = Ak + αkMk .
Step 5: Update the penalty parameter μk+1 by (17).
Step 6: Loop. Let k = k + 1. Go to Step 1.
Step 7: Output. Â = Ak+1.

3 Convergence analysis

If the step sizes αk of Ak and βk of Ek are determined by the non-monotone line
search method [24], the convergence of ADSM and TESM can be analyzed on the
basis of Assumption 1 and Assumption 2 respectively, which is inspired by the
literature [21].

Assumption 1 The level set � = {(A, E) : F(A,E) ≤ F(A0, E0)} is bounded.

Lemma 3 Suppose that the direction matrices Mk and Nk are defined by (6) and
(12) respectively, where λk, ρk > 0, h, g ∈ (0, 1], and the step sizes αk, βk > 0.
Then, F(Ak, Ek) ≥ F(Ak+1, Ek+1).
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Proof On the one hand, according to the inequality (8), we get

αk〈∇f (Ak), Mk〉 + λkα
2
k

2
||Mk||2F + μk

h
||Ak + αkhMk||∗ ≤ μk

h
||Ak||∗. (18)

Combining Taylor expansion of f (Ak + αkMk) at Ak .

f (Ak + αkMk) − f (Ak) = αk〈∇f (Ak), Mk〉 + o(αk)

with (18),

∂F (Ak; Mk)

∂Ak

= lim
αk→0

F(Ak + αkMk) − F(Ak)

αk

= lim
αk→0

1

αk

[f (Ak + αkMk) + μk(||Ak + αkMk||∗ + γ ||E||1) − f (Ak)

− μk(||Ak||∗ + γ ||Ek||1)]
= lim

αk→0

1

αk

[αk〈∇f (Ak), Mk〉 + o(αk) + μk||Ak + αkMk||∗ − μk||Ak||∗]

≤ lim
αk→0

1

αk

[−λkα
2
k

2
||Mk||2F + o(αk) + (μk||Ak + αkMk||∗ − μk||Ak||∗)

+ (
μk

h
||Ak||∗ − μk

h
||Ak + αkhMk||∗)]

= lim
αk→0

−λkα
2
k

2 ||Mk||2F + o(αk)

αk

+ 0

= 0.

So F(Ak; Mk) decreases monotonously as k → +∞, namely,

F(Ak, Ek) ≥ F(Ak+1, Ek).

On the other hand, according to the inequality (14), we get

βk〈∇f (Ek), Nk〉 + ρkβ
2
k

2
||Nk||2F + μkγ

g
||Ek+gβkNk||1 ≤ μkγ

g
||Ek||1. (19)

Combining Taylor expansion of f (Ek + βkNk) at Ek

f (Ek + βkNk) − f (Ek) = βk〈∇f (Ek), Nk〉 + o(βk)
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with (19),

∂F (Ek; Nk)

∂Ek

= lim
βk→0

F(Ek + βkNk) − F(Ek)

βk

= lim
βk→0

1

βk

[f (Ek + βkNk) + μk(||Ak||∗ + γ ||Ek + βkNk||1) − f (Ek)

− μk(||Ak||∗ + γ ||Ek||1)]
= lim

βk→0

1

βk

[βk〈∇f (Ek), Nk〉 + o(βk) + μkγ ||Ek + βkNk||1 − μkγ ||Ek||1]

≤ lim
βk→0

1

βk

[−ρkβ
2
k

2
||Nk||2F + o(βk) + (μkγ ||Ek + βkNk||1 − μkγ ||Ek||1)

+ (
μkγ

g
||Ek||1 − μkγ

g
||Ek + gβkNk||1)]

= lim
βk→0

−ρkβ
2
k

2 ||Nk||2F + o(βk)

βk

+ 0

= 0.

So F(Ek; Nk) decreases monotonously as k → +∞, namely,

F(Ak+1, Ek) ≥ F(Ak+1, Ek+1).

By combining F(Ak, Ek) ≥ F(Ak+1, Ek) and F(Ak+1, Ek) ≥ F(Ak+1, Ek+1),
we have the inequality F(Ak, Ek) ≥ F(Ak+1, Ek+1).

Lemma 4 Let l1(k) be an integer such that

k − m1(k) ≤ l1(k) ≤ k andF(Al1(k)) = max
0≤j≤m1(k)

F (Ak−j )

and let l2(k) be an integer such that

k − m2(k) ≤ l2(k) ≤ k andF(El2(k)) = max
0≤j≤m2(k)

F (Ek−j ),

where {
m1(0) = 0, 0 ≤ m1(k) ≤ min{m1(k − 1) + 1, m̃1},
m2(0) = 0, 0 ≤ m2(k) ≤ min{m2(k − 1) + 1, m̃2}.

If the step sizes αk and βk are determined by the non-monotone line search method
[24], the direction matrices Mk and Nk satisfy

lim
k→∞ αk||Mk||F = 0 and lim

k→∞ βk||Nk||F = 0

respectively.

Proof The non-monotone line search method is used to determine the step sizes αk

and βk , please see the formulas (20)–(23).
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Let δ1 ∈ (0, 1), ρ1 ∈ (0, 1), and m̃1 be a positive integer. The method is to choose

the smallest non-negative integer j1k so that the step size αk = α̃ρ
j1k
1 satisfies

F(Ak + αkMk) ≤ max
0≤j1k ≤m1(k)

F (Ak−j1k
) + δ1αk�

1
k, (20)

where

�1
k = 〈∇f (Ak), Mk〉 + μk||Ak + hMk||∗ − μk||Ak||∗

h
, (21)

m1(0) = 0, 0 ≤ m1(k) ≤ min{m1(k − 1) + 1, m̃1}.
The inequality (8) apparently shows if Mk 
= 0,

�1
k ≤ −λk

2
||Mk||2F < 0

Let δ2 ∈ (0, 1), ρ2 ∈ (0, 1), and m̃2 be a positive integer. It is to choose the

smallest non-negative integer j2k so that the step size βk = β̃ρ
j2k
2 satisfies

F(Ek + βkNk) ≤ max
0≤j2k ≤m2(k)

F (Ek−j2k
) + δ2βk�

2
k, (22)

where

�2
k = 〈∇f (Ek), Nk〉 + γμk||Ek + gNk||1 − γμk||Ek||1

g
, (23)

m2(0) = 0, 0 ≤ m2(k) ≤ min{m2(k − 1) + 1, m̃2}.
The inequality (14) apparently shows that if Nk 
= 0,

�2
k ≤ −ρk

2
||Nk||2F < 0.

By the inequalities (20) and (22), for ∀k > max{m̃1, m̃2},
F(Al1(k), El2(k))

= F(Al1(k)−1 + αl1(k)−1�
1
l1(k)−1, El2(k)−1 + βl2(k)−1�

2
l2(k)−1)

≤ max
0≤j1≤m1(l1(k)−1)

F (Al1(k)−1−j1 , El2(k)−1 + βl2(k)−1�
2
l2(k)−1) + δ1αl1(k)−1�

1
l1(k)−1

≤ max
0≤j1≤m1(l1(k)−1)

[ max
0≤j2≤m2(l2(k)−1)

F (Al1(k)−1−j1 , El2(k)−1−j2) + δ2βl2(k)−1�
2
l2(k)−1]

+ δ1αl1(k)−1�
1
l1(k)−1

= max
0≤j1≤m1(l1(k)−1)

max
0≤j2≤m2(l2(k)−1)

F (Al1(k)−1−j1 , El2(k)−1−j2) + δ1αl1(k)−1�
1
l1(k)−1

+ δ2βl2(k)−1�
2
l2(k)−1

= F(Al1(l1(k)−1), El2(l2(k)−1)) + δ1αl1(k)−1�
1
l1(k)−1 + δ2βl2(k)−1�

2
l2(k)−1 .

According to Assumption 1, the sequence {F(Al1(k), El2(k))} converges to a limit
as k → ∞.

From αk = α̃ρ
j1k
1 > 0, βk = β̃ρ

j2k
2 > 0, �1

l1(k)−1 ≤ 0, �2
l2(k)−1 ≤ 0, we get

0 ≤ lim
k→∞ δ1αl1(k)−1�

1
l1(k)−1 + lim

k→∞ δ2βl2(k)−1�
2
l2(k)−1 ≤ 0.
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Thus,
lim

k→∞ δ1αl1(k)−1�
1
l1(k)−1 + lim

k→∞ δ2αl2(k)−1�
2
l2(k)−1 = 0.

According to lim
k→∞ δ1αl1(k)−1�

1
l1(k)−1 ≤ 0 and lim

k→∞ δ2βl2(k)−1�
2
l2(k)−1 ≤ 0, we

get

lim
k→∞ δ1αl1(k)−1�

1
l1(k)−1 = 0, (24)

lim
k→∞ δ2βl2(k)−1�

2
l2(k)−1 = 0. (25)

From (24), (25) and the analysis of Grippo et al. in [24], we can deduce the
following conclusions: the direction matrices Mk and Nk satisfy

lim
k→∞ αk||Mk||F = 0 and lim

k→∞ βk||Nk||F = 0.

respectively.

Based on Assumption 1, Lemma 3 and Lemma 4, the global convergence of
ADSM that is shown in Theorem 5 is proved.

Theorem 5 Let sequences {(Ak, Ek)}, {Mk}, and {Nk} be generalized by Algorithm
1. Then, the sequence {(Ak, Ek)} converges to the globally optimal solution (A∗, E∗)
of the general model (2).

Proof According to lim
k→∞ αk||Mk||F = 0 in Lemma 4, we get

lim
k→∞ ||Mk||F = 0

or
lim

k→∞ ||Mk||F 
= 0 and lim
k→∞ αk = 0.

When lim
k→∞ ||Mk||F = 0, the model Ak+1 = Ak + αkMk yields that

∀ε > 0, ∃N ∈ N∗, ∀k > N, ||Ak+1 − Ak||F < ε. By Cauchy’s test for
convergence, lim

k→∞ Ak = A∗.
When lim

k→∞ ||Mk||F 
= 0 and lim
k→∞ αk = 0, because αk is the first value satisfying

(20), ∃k1 ∈ N∗ such that for ∀k ≥ k1, we get (Lemma 3)

F(Ak + αk

ρ1
Mk) > max

0≤j≤m1(k)
F (Ak−j ) + δ1

αk

ρ1
�1

k ≥ F(Ak) + δ1
αk

ρ1
�1

k . (26)

Because of the smoothness of f (·), we can Taylor expand it at Ak such that

f (Ak + αk

ρ1
Mk) − f (Ak) = αk

ρ1
〈∇f (Ak + θk

αk

ρ1
Mk), Mk〉, (27)

where θk ∈ (0, 1) is a constant.
Combining (26) and (27),
αk

ρ1
〈∇f (Ak + θk

αk

ρ1
Mk), Mk〉 + μk||Ak + αk

ρ1
Mk||∗ − μk||Ak||∗ > δ1�

1
k

αk

ρ1
,
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namely,

〈∇f (Ak + θk

αk

ρ1
Mk), Mk〉 + μk||Ak + αk

ρ1
Mk||∗ − μk||Ak||∗

αk

ρ1

> δ1�
1
k .

Let α̃ = h. Because αk → 0 as k → ∞, we obtain αk < ρ1h as k → ∞. Based
on Lemma 1, the following inequality can be obtained.

μk||Ak + αk

ρ1
Mk||∗ − μk||Ak||∗

αk

ρ1

− μk||Ak + hMk||∗ − μk||Ak||∗
h

≤ 0.

〈∇f (Ak + θk

αk

ρ1
Mk), Mk〉 − 〈∇f (Ak), Mk〉

≥ 〈∇f (Ak + θk

αk

ρ1
Mk), Mk〉 − 〈∇f (Ak), Mk〉

+ μk||Ak + αk

ρ1
Mk||∗ − μk||Ak||∗

αk

ρ1

− μk||Ak + hMk||∗ − μk||Ak||∗
h

> δ1�
1
k − �1

k

= −(1 − δ1)�
1
k

≥ (1 − δ1)
λ(min)

2
||Mk||2F .

(28)

By taking the limits in both sides of the inequality (28), we get

0 > (1 − δ1)
λ(min)

2
lim

k→∞ ||Mk||2F > 0,

namely, lim
k→∞ ||Mk||F = 0. So lim

k→∞ Ak = A∗.
According to lim

k→∞ βk||Nk||F = 0 in Lemma 4, we get

lim
k→∞ ||Nk||F = 0

or
lim

k→∞ ||Nk||F 
= 0 and lim
k→∞ βk = 0.

When lim
k→∞ ||Nk||F = 0, the model Ek+1 = Ek + βkNk yields that

∀ε′ > 0, ∃N ′ ∈ N∗, ∀k > N ′, ||Ek+1 − Ek||F < ε′. By Cauchy’s test for
convergence, lim

k→∞ Ek = E∗.
When lim

k→∞ ||Nk||F 
= 0 and lim
k→∞ βk = 0, because βk is the first value satisfying

(22), ∃k2 ∈ N∗ such that for ∀k ≥ k2, we get (Lemma 3)

F(Ek + βk

ρ2
Nk) > max

0≤j≤m2(k)
F (Ek−j ) + δ2

βk

ρ2
�2

k ≥ F(Ek) + δ2
βk

ρ2
�2

k . (29)

Because of the smoothness of f (·), we can Taylor expand it at Ek such that

f (Ek + βk

ρ2
Nk) − f (Ek) = βk

ρ2
〈∇f (Ek + θ ′

k

βk

ρ2
Nk), Nk〉, (30)

where θ ′
k ∈ (0, 1) is a constant.
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Combining (29) and (30),

βk

ρ2
〈∇f (Ek + θ ′

k

βk

ρ2
Nk), Nk〉 + μkγ ||Ek + βk

ρ2
Nk||1 − μkγ ||Ek||1 > δ2�

2
k

βk

ρ2
,

namely,

〈∇f (Ek + θ ′
k

βk

ρ2
Nk), Nk〉 + μkγ ||Ek + βk

ρ2
Nk||1 − μkγ ||Ek||1

βk

ρ2

> δ2�
2
k .

Let β̃ = g. Because βk → 0 as k → ∞, we obtain βk < ρ2g as k → ∞. Based
on Lemma 2, the following inequality can be obtained.

μkγ ||Ek + βk

ρ2
Nk||1 − μkγ ||Ek||1

βk

ρ2

− μkγ ||Ek + gNk||1 − μkγ ||Ek||1
g

≤ 0.

〈∇f (Ek + θ ′
k

βk

ρ2
Nk), Nk〉 − 〈∇f (Ek), Nk〉

≥ 〈∇f (Ek + θ ′
k

βk

ρ2
Nk), Nk〉 − 〈∇f (Ek), Nk〉

+μkγ ||Ek + βk

ρ2
Nk||1 − μkγ ||Ek||1

βk

ρ2

− μkγ ||Ek + gNk||1 − μkγ ||Ek||1
g

> δ2�
2
k − �2

k

= −(1 − δ2)�
2
k

≥ (1 − δ2)
ρ(min)

2
||Nk||2F . (31)

By taking the limits in both sides of the inequality (31), we get

0 > (1 − δ2)
ρ(min)

2
lim

k→∞ ||Nk||2F > 0,

namely, lim
k→∞ ||Nk||F = 0. So lim

k→∞ Ek = E∗.
In addition, we note that Ak+1 depends on Ak and Ek , Ek+1 depends on Ak+1 and

Ek , both Ak and Ek simultaneously converge to their own limits as k → ∞, so we
obtain lim

k→∞(Ak, Ek) = (A∗, E∗).

Assumption 2 The level set � = {A : F(A) ≤ F(A0)} is bounded.

Lemma 5 Suppose that the direction matrixMk is defined by (6), where λk > 0, h ∈
(0, 1], and the step size αk > 0. Then, F(Ak) ≥ F(Ak+1).
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Lemma 6 Let l(k) be an integer such that

k − m(k) ≤ l(k) ≤ k andF(Al(k)) = max
0≤j≤m(k)

F (Ak−j ),

where

m(0) = 0, 0 ≤ m(k) ≤ min{m(k − 1) + 1, m̃}.
If the step size αk is determined by the non-monotone line search method, the
direction matrix Mk satisfies

lim
k→∞ αk||Mk||F = 0.

Theorem 6 Let sequences {Ak} and {Mk} be generalized by Algorithm 2. Then, the
sequence {Ak} globally converges to the optimal solution A∗ of the general model
(4).

Theorem 6 that is the global convergence theorem of LRMC is based on Assump-
tion 2, Lemma 5, and Lemma 6. In fact, Lemma 5, Lemma 6, and Theorem 6 can
be proved easily by referring to the proof procedure of Lemma 3, Lemma 4, and
Theorem 5 respectively.

At each iteration of ADSM and TESM, the intervals of the proper step sizes αk

and βk determined by the non-monotone line search method are about (0.09, 0.11).
Thus, in order to be in pursuit of fast convergence, this paper takes a fixing value
from the interval instead of the linear search methods at all iterations. We think that
the global convergence of the two algorithms can also be guaranteed in some sense.

4 Numerical experiments

All numerical experiments about RPCA and LRMC are implemented with a Matlab
R2010b mathematical computing software on a Windows 7 system installed on a
HP desktop computer with an Intel(R) Core(TM), which has a 2.27 GHz i5 CPU, a
dual-core processer, and 3.87 GB of RAM.

4.1 Experiments about RPCA

We make the step sizes αk and βk be 0.10 at all iterations. Without loss of general-
ity, let the observation data matrix D be an n-order square matrix. The true solution
is denoted by an ordered pair (A∗, E∗) ∈ (Rn×n, Rn×n). The low-rank matrix A∗
with rank r for simulation is generated by the product of two independently and ran-
domly generated matricesAn×r

L andAn×r
R whose entries obey independently standard

normal distribution, namely, A∗ = ALAT
R . All the entries in the support set of the

sparse matrix E∗ is chosen independently and uniformly at random in the interval
[−500, 500]. In reality, small noise refers to Gaussian noise generally, so we suppose
that the small noise matrix N∗ ∈ Rn×n is a Gaussian noise matrix whose entries
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independently subject to standard normal distribution. Let D = A∗ + E∗ + σN∗
where σ ∈ [0, 1] is the level of Gaussian noise. In the experiments, (Â, Ê) denotes
the ordered output matrix pair of Algorithm 1.

Considering that the observation data matrix is contaminated by Gaussian noise
(σ 
= 0), we compare ADSM with APGL. The stopping criterions of ADSM and
APGL are forcedly set to be the same generalized formula (32).

||D − Ak+1 − Ek+1||F
||D||F < tol, (32)

where tol is a proper small positive number. The relative error of Â is defined as (33).

relerr = ||A∗ − Â||F
||A∗||F . (33)

If someone wants to solve the models (2) and (4) by the augmented Lagrange multi-
plier method, the two papers [25] written by Yunhai Xiao et al. and [21] written by
Caihua Chen et al. can be referred to and we may be inspired by their related research.

In order to study how different orders of magnitude of the level σ of Gaussian
noise have effect on low-rank matrix recovery, we set three cases: σ = 10−3, σ =
10−2 and σ = 10−1 as follows. The recovery effects of the low-rank matrix Â are
shown in Fig. 1 and Table 1 intuitively. In Fig. 1, the figures in the first row are
corresponding to σ = 10−3, those in the second row are corresponding to σ = 10−2

and those in the third row are corresponding to σ = 10−1. In Table 1, relerr is the
relative error of the low-rank matrix Â; t(s) is the running time and #iters is iteration
counts.

Let the rank r of A∗ be 5, the threshold tol be 10−4, the level σ be 10−3, the ratio
of non-zero entries of E∗ be 0.05 and other parameters values be default. It is shown
that the relative error of ADSM is a little less than that of APGL and the running time
of ADSM is apparently superior to that of APGL as the order n grows from 200 to
2600.

Let tol be 10−3, the level σ be 10−2 and other parameters values be in accordance
with above. It can be seen that the relative error of ADSM is a little less than that of
APGL as the matrix order grows from 200 to 300, and the running time of ADSM is
apparently superior to that of APGL as the order n grows from 100 to 2600 because
the number of SVD evaluations of ADSM is much less than that of APGL. The
number of SVD evaluations of the two algorithms ADSM and APGL are equal to
their own iteration counts.

Let tol be 10−2, the level σ be 10−1, and other parameter values be in accordance
with above. It can be seen that the relative error of ADSM is a little less than that
of APGL as the order n grows from 800 to 2600 and the running time of ADSM
is apparently superior to that of APGL as the order n grows from 100 to 2600. The
reason for the phenomenon is as same as above.

In order to study how different orders n have effect on low-rank matrix recovery,
we set three cases again: n = 500, n = 1000, and n = 2000. The recovery effects of
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Fig. 1 Recovery effects with different levels σ

the low-rank matrix Â are shown in Table 2 intuitively. Let the rank r grow from 10
to 50 by 10, the level σ be 10−2, the threshold value tol be 10−3. It can be seen from
Table 2 that the relative error of ADSM is close to that of APGL, but the running time
and #iters of ADSM are nearly half of those of APGL. The advantages of ADSM are
obvious, especially in the aspect of the running time.

We select a real data example about face image denoising whose pictures are
shown in Fig. 2 that are taken from the Extended Yale Face B database. Their sizes
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Table 1 Recovery effects with different levels σ

Parameter setting ADSM APGL

σ n relerr t(s) #iters relerr t(s) #iters

1.00E−03 500 8.76E−04 2.35 14 1.15E−03 15.62 83

1.00E−03 1000 5.99E−04 8.93 14 8.00E−04 52.84 83

1.00E−03 1500 4.98E−04 19.73 14 6.55E−04 123.79 83

1.00E−03 2000 4.23E−04 37.38 14 5.62E−04 199.54 83

1.00E−03 2500 3.76E−04 70.71 14 5.01E−04 310.36 83

1.00E−02 500 1.44E−02 1.85 10 1.06E−02 7.40 62

1.00E−02 1000 9.69E−03 6.43 10 8.14E−03 30.76 61

1.00E−02 1500 7.88E−03 15.29 10 6.67E−03 63.78 61

1.00E−02 2000 6.75E−03 32.55 10 5.72E−03 109.96 61

1.00E−02 2500 5.97E−03 48.38 10 5.09E−03 173.34 61

1.00E−01 500 1.08E−01 1.14 7 1.08E−01 6.38 40

1.00E−01 1000 7.59E−02 5.08 7 8.25E−02 19.16 39

1.00E−01 1500 6.17E−02 13.83 7 6.76E−02 48.36 39

1.00E−01 2000 5.36E−02 25.74 7 5.80E−02 74.20 39

1.00E−01 2500 4.74E−02 35.69 7 5.19E−02 122.58 39

are all 192 × 168, namely, each picture has 32,256 pixel points. The face of a par-
ticipant is irradiated by a continuous change light source, so the shadows, reflectors,
and so on appear on the facial pictures (see the first column), resulting in poor dis-
play effects. If the face is not irradiated by any change light source, the similarity
of all his facial pictures data should be very high. In other words, if the values
of all pixel points of the ith picture of the participant can be arranged into a col-
umn vector whose dimension is 32,256, the observation data matrix D formed by
all his facial pictures is low-rank. Once illumination is considered, D is contami-
nated by the shadows, the reflectors, and so on so that it is not a low-rank matrix
until they are eliminated thoroughly. In fact, the shadows, the reflectors, and so on
occupy a small proportion in the pictures and the positions of the non-zero entries
of the arranged matrix are scattered, so they can form a sparse matrix E. In the real
world, pictures are often contaminated by small noise (e.g., Gaussian noise), so we
add Gaussian noise whose level is 10−3 into the pictures (see the second column).
We stack the data of all the pictures as D ∈ R32,256×58. The pictures in the third
and fourth columns are recovered by ADSM and APGL respectively. It is seen that
the recovered pictures by ADSM is a little clearer than that by APGL, especially in
the aspect of removing Gaussian noise. In addition, the running time of ADSM and
APGL is 57.32 s and 149.61 s respectively. Obviously, the former is much less than
the latter.
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Table 2 Recovery effects with different orders n

Parameter setting ADSM APGL

n r relerr t(s) #iters relerr t(s) #iters

500 10 1.20E−02 5.02 29 1.06E−02 10.83 62

500 20 9.81E−03 5.52 30 8.65E−03 11.91 64

500 30 7.95E−03 6.00 31 7.84E−03 13.68 65

500 40 8.01E−03 6.47 31 7.23E−03 13.43 66

500 50 6.94E−03 7.60 32 7.27E−03 16.12 66

1000 10 8.31E−03 15.90 29 7.34E−03 32.70 62

1000 20 8.38E−03 18.20 29 7.36E−03 38.14 62

1000 30 6.77E−03 18.32 30 6.71E−03 41.89 63

1000 40 6.81E−03 20.21 30 6.03E−03 43.58 64

1000 50 6.93E−03 22.34 30 6.10E−03 46.83 64

2000 10 5.83E−03 76.65 29 5.72E−03 132.85 61

2000 20 5.87E−03 68.36 29 5.19E−03 176.02 62

2000 30 5.90E−03 76.27 29 5.18E−03 154.46 62

2000 40 5.93E−03 95.30 29 5.22E−03 187.53 62

2000 50 4.78E−03 90.07 30 4.72E−03 179.85 63

Fig. 2 Recovery effects of face image denoising
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4.2 Experiments about LRMC

We also make the step size αk be 0.10 at all iterations and the observation data
matrix P�(D) be an n-order square matrix. Let P�(D) = P�(A∗)+P�(σN∗). The
stopping criterion of TESM is set to be the expression (34).

||Ak+1 − Ak||F
||Ak||F < tol. (34)

The relative error formula of the recovered low-rank matrix Â is defined as the
expression (35).

relerr = ||Â − D||F
||D||F . (35)

Other parameters are set to be as same as Section 4.1.
We compare TESM with APGL, FPCA in the LRMC field. When σ = 10−3, the

numerical results are shown in Table 3 where m is the number of known samples,
df = r(2n − r) is the degree of freedom, SR=m/n2 is the sample ratio, rank is
the rank of the recovered low-rank matrix, and error is input error, in other word,
FPCA cannot work at the cases. It can be seen that FPCA does not work well in the
two aspects. On the one hand, it estimates the low-rank matrix inaccurately in the
conditions: n=500 and r/n > 0.1. On the other hand, it cannot work and outputs
input error. APGL performs better than FPCA, but APGL does not have excellent

Table 3 Numerical results of TESM, APGL, and FPCA at the level σ = 10−3

Parameter setting Running time (s) Relative error

n r m/df SR TESM APGL FPCA TESM APGL FPCA

500 30 6 0.70 4.97 5.80 42.50 3.25E−03 5.97E−04 1.05E−02

500 50 5 0.95 6.80 7.92 45.28 3.33E−03 4.96E−04 8.32E−01

500 50 4 0.76 6.87 9.06 44.74 3.81E−03 9.81E−04 1.90E−01

500 80 3 0.88 11.23 12.59 46.12 3.53E−03 7.89E−04 8.85E−01

1000 50 6 0.59 18.55 19.56 39.76 3.30E−03 8.69E−04 3.14E−04

1000 80 6 0.92 29.09 32.08 Error 3.27E−03 5.31E−04 Error

1000 80 5 0.77 29.49 33.58 Error 3.26E−03 1.40E−03 Error

1000 100 5 0.95 36.77 46.70 Error 3.30E−03 4.89E−04 Error

1000 100 4 0.76 36.38 47.12 Error 3.74E−03 7.07E−04 Error

2000 100 6 0.59 110.84 115.53 168.94 3.30E−03 1.38E−03 7.04E−05

2000 200 5 0.95 224.49 267.99 Error 3.36E−03 3.53E−01 Error

2000 200 4 0.76 225.08 222.94 Error 3.80E−03 3.63E−01 Error

2000 300 3 0.83 374.86 244.74 Error 4.02E−03 5.38E−01 Error

3000 200 6 0.77 402.92 499.78 error 3.79E−03 3.86E−01 Error

3000 200 5 0.64 429.65 427.04 710.54 3.29E−03 3.93E−01 1.14E−04

3000 300 5 0.95 694.20 579.75 Error 3.35E−03 5.62E−01 Error

3000 300 4 0.76 701.53 507.59 Error 3.76E−03 5.73E−01 Error
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Table 4 Numerical results of TESM, APGL, and FPCA at the level σ = 10−2

Parameter setting Running time (s) Relative error

n r m/df SR TESM APGL FPCA TESM APGL FPCA

500 30 6 0.70 6.11 6.43 47.18 3.33E−03 4.22E−03 1.53E−01

500 50 5 0.95 7.43 8.45 49.63 3.39E−03 4.50E−03 8.36E−01

500 50 4 0.76 7.70 9.61 50.15 3.88E−03 5.27E−03 3.31E−01

500 80 3 0.88 12.66 13.43 51.34 3.59E−03 5.96E−03 8.05E−01

1000 50 6 0.59 20.28 22.16 248.80 3.35E−03 4.33E−03 1.53E−03

1000 80 6 0.92 31.67 33.09 Error 3.30E−03 4.13E−03 Error

1000 80 5 0.77 31.51 35.34 Error 3.30E−03 4.79E−03 Error

1000 100 5 0.95 42.81 48.49 Error 3.33E−03 4.50E−03 Error

1000 100 4 0.76 42.92 45.33 Error 3.77E−03 5.26E−03 Error

2000 100 6 0.59 124.10 116.57 187.61 3.32E−03 4.44E−03 6.93E−04

2000 200 5 0.95 233.80 237.45 Error 3.37E−03 3.53E−01 Error

2000 200 4 0.76 230.85 205.15 Error 3.82E−03 3.63E−01 Error

2000 300 3 0.83 389.67 216.94 Error 4.03E−03 5.38E−01 Error

3000 200 6 0.77 424.19 450.75 Error 3.80E−03 3.86E−01 Error

3000 200 5 0.64 455.99 379.19 669.99 3.31E−03 3.93E−01 6.10E−04

3000 300 5 0.95 723.91 553.78 Error 3.36E−03 5.63E−01 Error

3000 300 4 0.76 740.81 478.13 Error 3.77E−03 5.73E−01 Error

performance at the cases in which r exceeds 150. TESM can cover the shortages
of FPCA and APGL, namely, not only TESM can accurately estimate the low-rank
matrix, but also its running time is the shortest among the three algorithms. When
σ = 10−2, the numerical results are shown in Table 4, from which we can get the
similar conclusions.

5 Conclusions

In recent years, the popular RPCA and LRMC problems for recovering a low-rank
component have extensive applications in pattern recognition. We propose, analyze,
and test the new practical algorithms ADSM and TESM, for solving the general
relaxed models (2) and (4) respectively. This paper utilizes Taylor expansion, SVD,
shrinkage operator, and so on to deduce the iterative direction matrices. We combine
the direction step size formula with the alternating direction minimization idea to
design the structure of ADSM. This paper presents the global convergence theorems
of the two algorithms by supposing that the objective function F(·) is bounded. The
experimental results illustrate that they are effective instruments to recover low-rank
component. The performance comparisons with the efficient solver APGL verify the
advantages of ADSM in terms of running time and relative error. TESMmakes up for
the defects that FPCA inaccurately estimates or cannot estimate the solutions of the
model (4) at many cases and APGL does not have good performance in some scenarios.
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