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The antigen PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1)
plays a key role in the pathogenicity and immune evasion of the deadliest malaria
parasite named Plasmodium falciparum. This antigen is encoded by a multi-gene
family called var. Var genes evolve rapidly and have extreme diversity, allowing
parasites to evade detection from the human immune system and remain in the
human bloodstream. Previous studies have shown that recombination is one of the
main mechanisms for maintaining the diversity of this gene family.

We focus on the DBL𝛼 tag in the DBL𝛼 domain of var gene. To fully understand
recombination and its effects on the evolution of DBL𝛼 tags, we study the recom-
binant tags and their identification. More specifically, we seek to identify, from a
large input dataset, which tags are recombinant and which are not.

In this thesis, we firstly develop an algorithm for detecting recent recombinants from
a large dataset of unaligned sequences. This algorithm utilises a jumping hidden
Markov model (JHMM) developed by Zilversmit et al., and can handle thousands
of gene-length sequences. We demonstrate its accuracy through biologically realistic
simulations. Applying this algorithm to a real dataset collected from Ghana, we de-
rive a series of novel findings; for instance, non-recombinant tags are more conserved
than recombinant ones.

Next, to make this algorithm applicable to the larger datasets that are being gen-
erated today, we propose a modified JHMM that constrains recombination jump
destinations. We show the accuracy and efficiency of this model through simulation-
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s, while the accuracy of identifying recombination with our model is comparable
with one using unconstrained model. We demonstrate the utility of this model by
applying it to a large longitudinal dataset of DBL𝛼 tags from Ghana.

We finally focus upon the classification of upstream sequences (ups) of var genes
using DBL𝛼 tags. We design a profile HMM-based approach to classify DBL𝛼
tags into three ups groups, improving existing pipelines which only classify them
into two groups. Our method also includes a quantification of group membership
probability. We show this algorithm’s effectiveness through cross-validation on a
global set of DBL𝛼 tags; importantly, setting a threshold on inferred probabilities
further improves classification performance.
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Chapter 1

Introduction

1.1 Malaria

Malaria is one of the most common infectious diseases [1, 2] caused by parasites.
These parasites are generally transmitted to humans by bites from infected mosquitoes,
in rare situations, from mother to baby [3]. When the parasites enter the human
blood, they will infect and modify the red blood cells and cause the symptoms like
high fevers, chills, sweating, headache, and muscle or joint pain.

Without prompt diagnosis and treatment, malaria can be severe and sometimes fatal.
After hours or days of the initial symptoms, complications of severe malaria could
occur and lead to the failure of different organs. For instance, the blocked blood
vessels by parasites in the brain would cause cerebral malaria, which may lead to
permanent brain damage and various clinical manifestations with age [4]. Moreover,
malaria is one of the leading causes of death in many developing countries.

1.1.1 Disease burden

Though the malaria case incidence and mortality rate declined slowly from 2000
to 2022 (81.0 to 58.4 per 1000 population, 0.30 to 0.14 per 1000 population, re-
spectively), there were still an estimated 249 million malaria cases, and 608,000
malaria-related deaths globally in 2022 [5]. In the past decades, malaria kills an
estimated 500,000 persons annually worldwide [6], mostly African children.
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Malaria is mostly distributed in tropical and subtropical areas of the world, which
are also habitats of mosquitoes with suitable temperatures, humidity and rainfall.
Among all endemic countries, WHO African Region saw the most malaria cases
(82%) and deaths (95%) in the past two decades [5]; its malaria case incidence and
mortality rate could go up to 369.3 and 142.6 per 1000 population.

The most susceptible populations of malaria are children under five, pregnant and
travellers who recently travelled to a malaria-transmission country. Children and
travellers are the people who do not develop immunity to malaria earlier. In addition,
pregnancy decreases the immunity of pregnant women and may further affect the
immunity of newborns [7, 8].

Malaria imposes enormous costs on nations, governments, communities, families
and individuals. The direct economic cost is estimated US $12 billion annually
[9]. Though the total funding for malaria control and elimination (for example, US
National Institutes of Health, Bill & Melinda Gates Foundation) increased from 2019
to 2022, the gap between funding received and the resources needed has widened
dramatically during the same period [5].

There are several global strategies to accelerate the control and elimination of
malaria. World Health Assembly adopted the Global technical strategy for malaria
2016–2030 (GTS) in 2015 [10]. The GTS aimed for the malaria case incidence and
mortality rate to decrease by at least 40% by 2020 and 90% by 2030 compared with
the 2015 baseline. Even though considerable progress has been made since 2000, only
25% of the countries (23 of the 93 malaria-endemic countries) achieved this mile-
stone [5]. Regarding malaria elimination, WHO has supported 21 countries with
the same goal — eliminate malaria by 2020 through the “E-2020 initiative”, unfor-
tunately only eight countries (38%) reported zero indigenous cases [11]. Afterwards,
WHO launched the “E-2025 initiative” to support more countries.

Unsurprisingly, the COVID-19 pandemic is one of the reasons why these goals have
not been achieved [12–16]. The majority of African countries suffered moderate
levels of disruption; as a result, the number of malaria cases and deaths in 2020
and 2021 increased significantly compared with 2019 [5, 17]. To some extent, this
pandemic delays malaria control and elimination. All in all, urgent action needs to
be taken to reverse the trend; otherwise, future milestones from GTS or “E-2025
initiative” are highly likely not to be met.
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Figure 1.1: Life cycle of the malaria parasite. In the human infection stage,
the sporozoites enter into human liver, and replicate themselves before releasing
thousands of merozoites. Merozoites travel in the human blood and infect red
blood cells (RBCs). They replicate asexually and transmit from infected RBCs
to other uninfected RBCs. A small amount of parasites undergo sexual reproduc-
tion and generate female and male gametocytes. In the mosquito infection stage,
after taking a meal from infected individuals, gametocytes progress to zygotes in
mosquito gut and further form the sporozoites through salivary gland. The in-
fected mosquito could infect a new human host.

1.1.2 Plasmodium parasites

Malaria parasites exist in both infected mosquitoes and humans. We show the
life cycle of parasites in Figure 1.1. When the parasites reproduce in the human
blood after leaving the liver, malaria symptoms start to appear. So the preven-
tion and treatment of malaria are conducted either by vector control — stop the
bites of malaria-carrying mosquitoes (for example, using indoor residual spraying,
long-lasting insecticidal bed nets, insect repellent on the skin, wearing long-sleeved
clothing and long pants), or antimalaria drugs — kill the parasites in human blood.
These drugs include artemisinin (the most effective class to the deadliest parasite),
chloroquine, doxycycline, mefloquine, quinine, primaquine and halofantrine [18].

Unfortunately, the tenacious survivability of parasites despite the usage of medicine
leads to continuously emerging drug resistance, the antimalaria drug efficacy is thus
affected in some regions of the world [19–23]. For instance, artemisinin has been
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monitored partial resistance in east Africa [5, 19], which may have devastating con-
sequences [20]; chloroquine resistance even spreads to nearly all malaria transmission
areas of the world [24].

Given this worrying situation, in our research, we focus on investigating the evolu-
tionary mechanisms of parasites. We believe the knowledge helps inform how the
evolutionary systems respond to our attempts to control malaria. For instance,
how much do we need to reduce the reservoir of infection in order to see measur-
able effects. The knowledge also helps slow the course of parasites to develop drug
resistance. Therefore, studying parasites’ evolutionary mechanisms is of great sig-
nificance to accelerate the control and elimination of malaria.

Malaria parasites belong to genus Plasmodium, and there are more than 200 Plas-
modium species which can infect birds, reptiles and mammals [25]. Nowadays, five
malaria parasites species can infect humans [26].

1. Plasmodium falciparum [27–29]. This most prevalent mosquito parasite has
caused 300, 000 deaths each year and 200 million clinical cases. It can cause
severe anemia due to blood loss and fatal cerebral malaria. It is mostly found
in tropical and subtropical areas.

2. Plasmodium vivax [30]. It is mainly found in Asia, Oceania and Latin America
in locations with high human population densities. An estimated 16 million
clinical malaria cases are from P. vivax.

3. Plasmodium ovale [31]. It is prevalent in sub-Saharan Africa where many
individuals are negative for the Duffy blood group, as P. ovale could infect
this special population group. Recently P. ovale is found to consist of two
distinct species P. ovale curtisi and P. ovale wallikeri [32].

4. Plasmodium malariae [33]. It has a longer life cycle and infection period. If
untreated with its infection, chronic infection can sometimes last the host’s
whole lifetime.

5. Plasmodium knowlesi [34]. A zoonotic malaria is found in Southeast Asia,
particular in Malaysia. After a 24-hour cycle in the human body, this leads
rapidly to severe infection.

Among all the above parasite species, Plasmodium falciparum is the deadliest [5],
accounting for most malaria cases and deaths worldwide. P. falciparum has evolved
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from a well-known Plasmodium subgenus called Laverania [35] which are present
in African gorillas, and P. falciparum is the only extant species that has trans-
ferred from gorillas and adapted to human beings [35, 36]. Moreover, it has devel-
oped resistance to nearly all available antimalarial drugs [37]. Though RTS,S and
R21/Matrix-M are the only two WHO-recommended vaccines that can kill P. falci-
parum [5], these two vaccines only target children without full protection/eradication
and lack corresponding implementation studies [38, 39]. Parasite P. falciparum is
therefore the subject of our research.

1.1.3 Plasmodium falciparum erythrocyte membrane protein

1

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) acts as both
an adhesion and antigen protein, playing a key role in the pathogenicity and im-
mune evasion of P. falciparum [40]. PfEMP1 is encoded from parasite genomes and
expressed on the membrane surface of red blood cells. P. falciparum-infected ery-
throcytes (IEs) could bind to other uninfected red blood cells, making the parasites
transmit to other cells and leading to fatal symptoms (for instance cerebral malaria
[41]). PfEMP1 is also an antigen, a major target for antibody and human immune
response [40]. It aids the parasites in evading the detection of the human immune
system. Consequently, the parasites could stay in the human bloodstream for a long
time and may lead to waves of parasitemia or human reinfection.

PfEMP1 is encoded by a hyper-variable and large multigene family called var. Var
genes evolve rapidly, millions of new var structures might be generated in only a
day per infected individual [42, 43]. There are ∼60 (range = 47-90 [44]) var genes in
each parasite genome [45], around 2/3 of var genes are distributed in subtelomeric
regions while the remaining 1/3 are found in central chromosome regions [46].

Despite being highly polymorphic within and between individuals [42], var genes
share the conserved architecture (see Figure 1.2). Each var has a two-exon struc-
ture. Exon 2 (≈1.5kb) is shorter and more conserved than Exon 1 (≈4-10kb).
Exon 2 encodes intracellular acidic terminal segment (ATS) [47], and the first
exon encodes the extracellular and transmembrane (TM) region. Exon 1 con-
sists of an N-terminal segment (NTS), a combination of Duffy-binding like (DBL)
and cysteine-rich interdomain region (CIDR) domains, followed by a TM region.
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Figure 1.2: Var architecture. The top of the figure shows the architecture
of var genes. Different var genes have different combinations of DBL and CIDR
domains. Among all domain classes, the DBL𝛼 domain is encoded by all (except
var2CSA [49–51]) members of the var family.

Based on amino acid sequence similarity, the DBL domain is divided into six ma-
jor classes (DBL𝛼, 𝛽, 𝛾, 𝛿, 𝜀, 𝜁), and the CIDR domain is divided into four classes
(CIDR𝛼, 𝛽, 𝛾, 𝛿) [48]. The overall architecture of var genes is highly variable regard-
ing the total number of domain classes and their order.

1.1.4 Recombination is one of the main mechanisms for var

genes

Previous studies [42, 52, 53] have shown that the primary mechanisms for maintain-
ing the diversity of var genes are single-base mutation and frequent recombination.
Point mutation is evident in highly similar protein regions without changing too
much function, and it might partially contribute to parasite evasion of host immu-
nity [54, 55]. Recombination is a process by which pieces of gene sequences are
broken and recombined, producing a new combination of genes. The position where
gene sequences are “spliced” is called a breakpoint (See the top panel of Figure 1.3).
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Parent 1:  DIGDIVRGKDLYLGDRKEKVKLEKRLIEIFKNITKNNYSTLK
DLSLEQVREYWWALNREDVWKALTCNAPDKAEYFVYKPDRLR
KFSNSKCGHGEHEVLTNLDYVPQYLR  

breakpoint  

Parent 2: DIGDIIRGKDLFLGTYQEKKSLEENLKNIFRKLYKELTKYKE
NEAVIKSRYENDGPNYYQLREDWWALNRKEIWKAITCDTEES
DTYFKQSSEGKYSFTNGQCGHNEENVLTNLDYVPQYLR  

Parent 3: DIGDIIRGKDLYLGYDDKEKKRRKQLENNLKDIFAKIHSDVT
SGRNKRTNSALQTRYQHDAPDYYQLREDWWTVNRNQVWEAIT
CEAPKDANYFIGSGNKSKSFSNPKCGHNENKVLTNLDYVPQF
LR  

Parent 4: DIGDIVRGRDMLRGTGNEKDQLENNLKKIFGKIHEGLTTTRG
KNAEELKARYQDENGGNYYKLREDWWTANRDQVWKAITCSAG
QKDTYFIKPNGRVYSFADAYCGRGDENVPTNLDYVPQFLR  

Child: DIGDIIRGKDLYLGDRKEKVKLEENLKNLFKNLYKELTKDKK
NAALQTRYGSDAPDYFQLREDWWTANRDQVWKAITCSAGQKD
TYFIKPNGRVYSFADAYCGRGDENVPTNLDYVPQFLR  

a b

A B

a B

Figure 1.3: Visualization of recombination process and an example with
DBL𝛼 tags. For the top panel, two genes (represented by green and blue rect-
angles) are rearranged, and the resulting recombinant is shown on the right side.
This figure demonstrates the recombination of genes with a single recombination
breakpoint. The bottom panel shows an example of a recombinant DBL𝛼 tag
(child) and its four parents. All the segments of the child inherited from various
parents are colored separately.
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Meiotic and mitotic recombination are the two major types of recombination involved
in the var genes. Both of them can generate novel var genes. Meiotic recombina-
tion occurs in the mosquito abdomen. Recombination happens between genomes as
parasites are in sexual reproduction. Mitotic recombination occurs in human blood,
where the parasites spend most of their life cycle. Parasites are in the non-sexual
stage, and recombination happens within the same genome. It has been found that
the extreme diversity of var genes is mainly due to meiotic recombination [53, 56],
followed by the mitotic recombination [57]. In our research, although the malaria
parasites we aim to analyze are from the human blood, there is var gene expression
during asexual development of parasites in human blood and var gene transcription
in the mosquito infection stage [58], so both types of recombination play a role in
the evolution of var genes.

Recombination is not randomly distributed across the var gene. Based on parasite
genomes of isolates around the globe, most recombination events occur in DBL do-
main, followed by CIDR domain, and other regions; in particular, DBL𝛿 is detected
to have the most breakpoints [59]. A significant recombination hotspot is found
between two DBL subdomains [46]. In addition, recombination tends to happen
between more closely related domains due to their high similarity [46, 60].

Despite plenty of research [42, 52, 54, 56, 57, 59–62] about var recombination, the
evolutionary history of var genes is still difficult to describe due to the presence
of frequent recombination. In general, when the genealogy is simple and does not
involve any horizontal process (such as recombination, horizontal gene transfer, hy-
bridization, introgression or reassortment [63]), to depict the gene sequences’ evolu-
tion, we use a phylogenetic tree where tips represent the present-day genes, and the
tree structure (topology) shows the evolutionary descent from a common ancestor.
Unfortunately, in the presence of recombination, a phylogenetic network is a more
appropriate representation of var genes’ evolutionary history. It is also extremely
challenging to construct a phylogenetic network for the sequences with modern-day
data size [64, 65]. Furthermore, frequent recombination precludes the phylogenetic
analysis. Therefore, quantifying the recombination events and related sequences is a
crucial step for understanding the var genes’ evolution, with implications in malaria
interventions.

While we aim to understand the evolution of full-length var genes, their complex
domain class composition makes it difficult to study. Therefore, we focus on the
DBL𝛼 domain, which is the most conserved domain [66] among all domain classes.
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Figure 1.4: DBL𝛼 structure. The top panel shows the DBL𝛼 tag is a small
region of DBL𝛼 domain. The bottom panel is a modification of Figure 1b from
[81]. The combination of homology blocks and highly variable regions (dotted line)
demonstrate the composition of DBL𝛼 tag and its surrounding.

It’s encoded by all (except var2CSA [49–51]) members of the var family. The DBL𝛼
domain is also immunogenic and has the potential for vaccination [67, 68]. However,
the DBL𝛼 domain itself is still highly variable, and a large number of recent studies
[62, 69–76] have focused on a small region (100-500 base pairs) of this domain called
the DBL𝛼 tag (Figure 1.4). Importantly, this tag can provide functional [69] and
structural [77, 78] information for the full-length var genes. The degenerate primers
for DBL𝛼 tag amplification from var genes have also been designed [56], making
extensive tags available. For illustration, we selected five DBL𝛼 tags arbitrarily
from the 3D7 reference genome [44] and aligned them with ClustalW v2.1 [79] using
default parameter settings. We visualized the alignment with Alignment viewer in
varDB [80], see Figure 1.5. Taken together, we study the DBL𝛼 tag rather than the
entire var gene or even the whole genome.

Regarding the tag structure, it’s known that within the var genes, there are some
semi-conserved and ancient segments [82] called homology blocks (HBs) [46]. For
the DBL𝛼 tag and its surrounding, there are three major HBs (HB3, HB5 and
HB2), as shown in Figure 1.4. There are also plenty of less frequent HBs within
the DBL𝛼 tag, such as HB14, HB36, HB54 etc. The numbers after HB represents
the frequency of specific HB. The smaller the number, the greater frequency. The
most frequent homology block is HB1, HB1 and HB4 are both outside of the DBL𝛼
tag [46] and so the most frequent ones related with DBL𝛼 tags are HB2, HB3 and
HB5. Although the existence of semi-conserved HBs, the detected HBs per DBL𝛼
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Figure 1.5: An alignment of five DBL𝛼 tags from the 3D7 reference
genome with ClustalW. The color scheme was based on conservation level per
alignment column. There are conserved motifs at the central and both ends of the
DBL𝛼 tag.

tag (HB combination) is variable [82]. The regions between HBs are also highly
variable, making the alignment of a large number of DBL𝛼 tags unreliable.

1.2 DBL𝛼 tags from a cross-sectional study in Ghana

Our empirical dataset is from the malaria parasites in a well-designed and imple-
mented study [73, 83, 84] in the Bongo district of Ghana. Researchers assembled
DBL𝛼 tags from P. falciparum confirmed individuals (isolates) [73, 83, 84]. This
dataset is the only longitudinal data available in the same location for asymptomatic
population [85].

In this study, researchers aimed to evaluate how age, geographical locations, season-
ality or other relevant factors affect the epidemiology of asymptomatic Plasmodium
falciparum infections. They selected Ghanaian participants of various age groups
residing in two catchment areas of Bongo District (Vea/Gowrie and Soe) where
malaria is the most prevalent public disease. The two catchment areas were selected
as Vea/Gowrie and Soe represented the irrigated and non-irrigated area separately,
and it was hypothesized that the prevalence of P. falciparum infections between
these two areas might differ [84, 86]. Ghana is characterized by a short wet sea-
son (June-October) and a long dry season (November-May); this study conducted
a series of surveys at the end of a multi-year wet or dry season. Specifically, a pilot
study and six surveys were carried out sequentially from 2012 to 2016. In addition,
IRS (indoor residual spraying with insecticides) interventions were also conducted.
See Table 1.1 for each survey’s completed date, corresponding season, IRS stage
and number of DBL𝛼 tags. These DBL𝛼 tags form our empirical dataset (GenBank
BioProject Number: PRJNA396962).
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Table 1.1: Summary of empirical data.

Sampling time Season Intervention Number of DBL𝛼 tags

Pilot June 2012 Dry − 35,591
Survey 1 October 2012 Wet Pre-IRS 134,877
Survey 2 June 2013 Dry Pre-IRS 82,249
Survey 3 June 2014 Dry IRS 65,837
Survey 4 October 2014 Wet IRS 35,378
Survey 5 October 2015 Wet Post-IRS 44,314
Survey 6 June 2016 Dry Post-IRS 37,632

1.3 Project aims

With these DBL𝛼 tags, we would like to quantify the recombination events in their
evolution and identify which tags are recombinant and which are not. These would
help us to understand the DBL𝛼 tags’ recombination patterns and functional changes
that occur with recombination, such as the frequency of recombinant tags, the distri-
bution of breakpoint locations and the recombination rate. In addition, separating
the recombinant and non-recombinant tags will facilitate direct comparisons between
them. These are the fundamental steps for describing the evolution of DBL𝛼 tags.
Overall, our primary project goal is to understand the evolutionary processes behind
DBL𝛼 evolution.

The first systematic attempt to quantify the recombination of DBL𝛼 domains was
performed by Zilversmit et al. [54]. They proposed a statistical model called the
jumping hidden Markov model (JHMM) and detected the recombination events from
the DBL𝛼 domains of P. falciparum and a closely related species, P. reichenowi.
A detailed overview is in Section 2.2.2.2. The advantages of the JHMM are that
it can estimate the recombination rate and infer the breakpoints from a dataset.
However, knowing the breakpoints does not always inform which sequences are the
recombinant. Specifically, when applying the JHMM, there are two major issues.

• When input sequences are collected from the same time point, the JHMM
cannot identify which sequences are recombinant and which are not.

• When the input data is a mix of sequences which are collected from different
time points, though the JHMM can detect the recombinant sequences, it is
computationally prohibitive when dealing with a large dataset.
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In terms of why the JHMM has such issues, it’s due to the identifiability problem with
a phylogenetic view. We expand this later in Chapter 3, please see Section 3.5.1.1
for details.

Since we aim to detect the recombination using the data within each survey and
across surveys, we need to address both of these issues. Therefore, these two prob-
lems form my first and second project goals separately. In the following, I show the
main difficulty of each issue and planned analysis in Section 1.3.1 and 1.3.2. Regard-
ing my third project, although we do not focus on analyzing the recombination like
previous projects, the recombination still plays an important role in it. The subject
of this project is still the DBL𝛼 tag. A brief background and associated project goal
are provided in Section 1.3.3.

1.3.1 Identifying recombinants from DBL𝛼 tags

In this project, we aim to develop an accurate algorithm to detect recombinant
DBL𝛼 tags, when the tags are collected at the same time. We also aim to apply this
algorithm to the Ghana pilot dataset and analyze the recombination patterns.

Although there are plenty of recombinant detection methods [87–113], nearly all of
them rely on a multiple sequence alignment or a reference panel of non-recombinants
(see our literature review at Chapter 2). Unfortunately, we can not provide a reliable
alignment nor reference as the DBL𝛼 tags are too diverse for generating high-quality
alignments. DBL𝛼 tags are diverse in terms of length (e.g. length varies from 110nt
to 504nt in our data shown in Table 1.1) and alignment quality by various standard
alignment methods [71]. Specifically, the regions between conserved homology blocks
are hyper-variable [46, 81], if we force to align DBL𝛼 tags with standard alignment
methods, long gaps would be introduced at regions with low homology [54]. Take
the Gismo [114] alignment of over 30,000 DBL𝛼 tags collected from ten countries
[62] as an example, its alignment length using translated DBL𝛼 tags is 748, while
the average sequence length is only 124aa. Different alignment methods generally
introduce gaps in different ways, resulting lots of diverse alignments given the same
data. As a result, the existing recombinant detection methods fail when dealing
with our unaligned DBL𝛼 tags.

Additionally, the number of available DBL𝛼 tags is always large, as the reservoir
of infection is large [5, 115, 116]; in our case, it is over 10,000. Taken together,
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these require a novel algorithm to detect recombinants from unaligned sequences
(like DBL𝛼 tags) within a practical time.

1.3.2 Identifying recombination from a longitudinal dataset

of DBL𝛼 tags

In this project, we aim to design an efficient algorithm to detect recombination from
the longitudinal dataset.

Although the JHMM can already detect the recombination from DBL𝛼 domains,
the model itself is still not biologically reasonable [54]. We have also validated this.
Specifically, the JHMM allows recombination between any two points in a pair of
sequences. Our study reveals that recombination only happens at the roughly same
normalized locations in a pair of sequence (Appendix A.2.2.4). Because of this, we
aim to improve the JHMM by adding constraints into the model. We believe this
constrained JHMM would help reduce the number of hidden states of the model,
thus reducing the running time. This is greatly beneficial for a much larger dataset,
that the conventional JHMM cannot handle.

Regarding the real data application, we focus on detecting recombination from sur-
veys finished at the end of wet seasons, as malaria infection prevalence in wet seasons
is usually higher than in dry seasons. After applying our model to this time series
data, we aim to analyze whether the recombination patterns change with time.

1.3.3 Classifying malaria var genes to ups groups

In this project, we focus on another segment of var gene, the upstream sequence
(ups). It is located before the NTS region of var gene, as shown in Figure 1.2.
Based on the ups similarity, var genes have been classified into three major groups
(upsA, upsB, upsC) [45, 117, 118]. Researchers have analyzed the 2000bp 5’ flank-
ing sequence (a var gene promoter element [119]) from the upstream sequence and
confirmed the ups grouping into three major types by phylogenetic analysis [117].
Figure 1.6 shows an example of three 2000bp upstream sequences belonging to upsA,
B and C groups. Different groups of var genes are strongly associated with various
chromosome locations, transcription orientations [118], and, importantly, disease
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Figure 1.6: Three 2000bp upstream sequences from the 3D7 reference
genome which belong to upsA, B and C groups separately. Three up-
stream sequences were chosen arbitrarily from 3D7 reference genome [44]. The
sequences in this graph from top to bottom belong to upsA, upsB and upsC group
separately.

severity. Classifying ups groups of the var genes is therefore crucial for preventing
and diagnosing malaria.

In this project, we aim to propose an algorithm to classify the var genes into ups
groups. A natural way is to extract the ups sequences and perform the classification
directly. However, the number of publicly available ups sequences is very limited. So
we aim to design a method that uses the DBL𝛼 tags (instead of ups) for classifying
the var genes into ups groups.

1.4 Structure of this thesis

The remaining of this thesis is organized as below.

Chapter 2 reviews the literature. In this chapter, I outline the existing methods for
identifying recombinants and recombination. In particular, I illustrate the funda-
mental method for modelling DBL𝛼 domain’s recombination — Zilversmit’s model
[54], and its theoretical foundation — Li and Stephens’ model [120]. I also provide
discussions about these methods’ limitations.

Chapter 3 describes our proposed algorithm for identifying recent recombinants from
unaligned sequences. This algorithm combines information from mosaic representa-
tions of the JHMM and distance-based comparisons to identify recombinants. We
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evaluate its performance by extensive simulations and comparisons with other exist-
ing recombinant detection methods. Finally, the application to an empirical dataset
uncovers a series of biologically meaningful results.

We design an improved JHMM to detect recombination in a larger dataset of DBL𝛼
tags. This new model is introduced in Chapter 4. Its effectiveness and efficiency are
demonstrated through simulations. Compared with the JHMM, our model generates
similar mosaic representations in a much shorter time. Ultimately, we apply our
model to the large longitudinal dataset of Ghana, and corresponding recombination
patterns are discussed.

Chapter 5 presents a probabilistic algorithm to classify ups groups using DBL𝛼 tags.
Compared with the existing approach that classifies ups into upsA and non-upsA
(upsB/C) two groups, our algorithm could distinguish upsB and upsC group var
genes and provide different degrees of membership to three ups groups. Through
cross validations, we show that our method’s classification accuracy is high; setting
a cutoff on inferred probabilities further increases the accuracy.

To summarize, I conclude all the work and discuss future research directions in
Chapter 6.

15



Chapter 2

Literature review

This chapter examines the current methods for detecting recombination events and
recombinant sequences. There are four main paradigms of recombination and re-
combinant identification methods. There are also specific studies which identify the
recombination of var genes. I briefly summarize them in Section 2.1. We stress that
none of these approaches is suitable for addressing our project goal — detecting
recombination events and recombinant DBL𝛼 tags. As previously mentioned, the
jumping hidden Markov model (JHMM) is a great tool for modelling the recombi-
nation of DBL𝛼 tags, I therefore examine it in Section 2.2 after the introduction of
basic HMM. This model’s limitations are also discussed.

2.1 Existing methods for identifying recombination

and recombinants

There are numerous methods for evaluating recombination in a dataset. These
methods have several objectives: detection of the absence or presence of recombi-
nation, identification of recombinant sequences and their breakpoints, and quan-
tification of population recombination rate along the genome. The first objective
is the prerequisite of the latter ones, while the last one is mainly addressed under
population genetic models. In this thesis, we focus on the second task. The most
exhaustive overview of available recombinant detection tools can be found in [121,
122] and on David Robertson’s website (http://bioinf.man.ac.uk/robertson/
recombination/programs.shtml). These methods can be roughly categorized into
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four categories [97]: (1) distance, (2) phylogenetic, (3) substitution distribution, and
(4) compatibility. I discuss them individually below.

Distance-based methods These methods are based on a reasonable assumption
that any given sequence is like the sequence with which it shares the most recent
common ancestor. The similarity between two non-recombinant sequences is uniform
throughout, whereas the similarity between a recombinant sequence and its parental
sequences would vary from one sequence to the next along the genome. Such shifting
of similarity among sequences indicates the presence of recombination.

Pairwise genetic distance is a common way to measure the sequence similarity, and
investigating the inversions of distance patterns [98] is the key to distance-based
methods. Typically, a sliding-window technique [88–90, 98] is usually used to obtain
the partitions of the input alignment, followed by the computation of distances across
partitions. Finally, some statistic are used to identify the partitions with evidence
of recombination.

There are a variety of distance-based recombination detection tools. RAT (Recom-
bination Analysis Tool [87]) is a cross-platform program that plots the similarity
vs. genome position. It can examine the suspicious recombinant sequence using the
single-sequence viewer or treat each sequence as the potential recombinant with the
auto search option. However, it requires user-specified parameters before the anal-
ysis, like the maximum number of contributing sequences to a recombinant. These
quantities are generally not known in practice. Therefore, it is useful for the ini-
tial and fast exploration of recombination. SimPlot [88] and RIP (Recombinant
Identification Program [89]) search each query sequence against a reference panel
by partitioning the alignment of all sequences using a sliding-window approach and
calculating the percent identity. They generate the equivalent output; the former
works on Windows computers, while the latter works on UNIX computers. Although
these two tools both provide an adjustable window size, a too-wide or too-narrow
window still affects the detection sensitivity [89, 98]. To alleviate this problem, Lee
and Sung [90] later introduces a new distance calculation measure and weighting
strategy and proposes an accurate and efficient algorithm called RB-FINDER. More-
over, its implementation does not require a specific computer system. In general,
the speed of distance-based methods is a significant advantage over other types of
approaches.
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Phylogenetic methods While genetic distance generally correlates well with the
evolutionary distance between sequences, it does not always do so [121]. Many
algorithms ([91, 92, 94, 95, 123]) instead use phylogeny information to detect recom-
bination signals.

A recombinant query would have diverse evolutionary histories with sequences as-
sembling its parents. Specifically, the corresponding phylogenetic trees differ before
and after the breakpoint. Several phylogenetic methods [91–93] first infer the phy-
logenetic trees across the partitions of sequence alignment and search for discordant
tree structures (topologies) between adjacent partitions. The ‘jump’ from one phy-
logenetic clade to another is interpreted as evidence of recombination. An early
method for identifying the recombinant genome is called BOOTSCAN [91]. It searches
each query sequence with a set of non-recombinant sequences and makes the boot-
strap phylogenetic tree inference for each partition of the alignment. Since this
method relies on a pre-defined bootstrap support value cutoff, and it lacks a sta-
tistical test of recombination, Martin et al. [92] then proposed a modified approach
called RECSCAN. It obtains the statistical rigour via calculating the probability of
identified recombination regions occurring by chance using a binominal distribution
introduced by Martin and Rybicki [109]. Besides, instead of searching the potential
recombinant query against the reference panel, RECSCAN scans every three sequences
(triple) without the requirement of specification of non-recombinant sequences.

More recently, there are methods [94, 95] which directly construct a phylogeny and
detect recombination without comparing the tree topologies. For instance, there
is an algorithm for detecting recombination of vast SARS-CoV-2 genomes called
RIPPLE [95]. This method uses a tree structure called mutation-annotated tree [124]
and identifies the long branches as the potential recombinant lineages. Then it
reconstructs the phylogeny by placing the segments of potential recombinants with
maximum parsimony. Moreover, this method conducts a permutation test to check
the significance of identified breakpoints. Until now, the phylogenetic-based methods
are the most frequently applied category [122] in detecting recombination.

Substitution distribution-based methods Substitution distribution-based ap-
proaches look for shifts in patterns of sites across (typically adjacent) sequence align-
ment partitions to find recombination breakpoints. These methods involve counting
nucleotides and constructing a test statistic to determine the degree of relatedness
between sequences. The statistic varies based on the algorithms, such as chi-squared
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value in MaxChi [96] and CHIMAERA [97], Pearson’s coefficient in PHYPRO [98], and ex-
act non-parametric test for 3SEQ [99, 100]. Notably, a sophisticated scan statistic
was used in Gubbins [101] to identify the regions with increased density of base sub-
stitution. These regions are indicative of recombination. Gubbins does not require
the parental sequences of recombinants to be present in the dataset; this is very
useful for the dataset with low sampling coverage. In general, methods based on
substitution distribution appear to be powerful [125, 126] and become more power-
ful as the recombination rate increases [97]. This is advantageous for sequences that
undergo frequent recombination.

One of the most commonly applied recombination detection programs is RDP4 [102].
It provides seven major methods (phylogenetic-based: BOOTSCAN [91] and RDP [109];
substitution distribution-based: MaxChi [96], CHIMAERA [97], SISCAN [107], 3SEQ

[99, 100], GENECONV [108]) for detecting the recombination signals from DNA se-
quences. This Windows program could remove the recombinant sequences or regions
for downstream recombination-free analysis; it also allows for exploring the evolu-
tion of recombination events. Its latest version, RDP5 [110] further improves the
efficiency and could flag the recombination signals which might be caused by other
factors instead of recombination (false positive signals) with methods described in
[127, 128].

Compatibility methods A few methods ([103–106]) test for compatibility on a
site-by-site basis to detect recombination breakpoints. The basic principle is that if
two sites are compatible, the tree topologies on these two sites are the same [129–
131]. Reticulate program [103] computes ‘neighbor similarity score’ for clustering
the compatible sites. However, it only returns the informative sites containing re-
combination signals. Lai and Ioerger [105] later proposed the ACR method to detect
the breakpoints accurately. It first uses a compatibility ratio to test the presence
of recombination from an input alignment. If there is recombination, it then com-
putes the compatibility score and identifies the site with the minimum compatibility
score suggestive as the evidence of recombination. Lai and Ioerger [106] continued
to extend this model to ptACR. This method conducts a permutation test on the
identified locations by ACR and further improves specificity. The shortcoming of
this method is that it cannot handle the alignment with gaps. Therefore, it is not
suitable for sequences with extreme diversity.

19



Chapter 2

Unfortunately, none of the above methods is suitable for identifying recombination
or recombinants for our large number (see Table 1.1) of diverse DBL𝛼 tags. The
distance and substitution-based methods have high computational costs for large
datasets, and they generally take an alignment as input. DBL𝛼 tags are too diverse
to have a reliable alignment, especially when there are many such tags. Phylogenetic
methods depend strongly on the precision of inferred phylogenies along the sequence
alignment. Ultimately, more precise inferred phylogenetic trees lead to a greater ca-
pacity to identify recombination signals correctly. This is unavoidably problematic
for sequences with a great deal of diversity like DBL𝛼 tags, from which it is typically
challenging to infer the evolutionary history. Also, DBL𝛼 tags’ large diversity pre-
cludes the most advanced compatibility method ptACR. Therefore, these methods
are not suitable for our data.

2.1.1 Methods for identifying var recombination and recom-

binants

In the context of var genes, there are few in vitro and in vivo studies ([42, 59, 61])
for identifying the var recombination. Kraemer et al. [61] use the full-length var
genes from three isolates (3D7, HB3, IT4) and study the sequence similarity with
BLASTN for each pair of var genes. They next visualize the similarities to find the
‘chimeras’ representing the recombinants or partial duplications between different
genes.

Claessens et al. [42] use slightly more strains (3D7, HB3, Dd2, W2) and conduct
‘clone tree’ experiments for generating the parasites (clones) at various generations.
This in vitro evolution generally spans several months. With generated clone trees,
the authors perform whole genome sequencing and find chimeras. These potential
recombinants are subsequently validated by capillary sequencing of PCR products.
They analyze all identified recombination instances and parental genes per recombi-
nation breakpoint. By dividing the number of recombination instances by number
of involved recombining pairs, an average of 2.4 breakpoints per pair of sequences is
reported. However, similar to Kraemer et al. [61], there is a lack of formal statistical
tests to identify recombinants and related breakpoints.

More recently, Otto et al. [59] assemble the nearly full-length var genes from ∼2400
African and Asian isolates. They focus on Exon 1 of the var genes and define a
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recombination breakpoint when an almost identical sequence match (>1kb) between
two sequences is interrupted by a subsequent less identical match (>0.5kb). They
report extensive recombination events of var genes. It is not trivial to modify this
approach for our much shorter DBL𝛼 tags. We also don’t have to do this as the
jumping hidden Markov model (JHMM [54]) has been designed to identify DBL𝛼
recombination.

The hidden Markov model (HMM) is a powerful tool in modelling recombination.
It either works as a sole model (like [54, 120, 132–134]) or work with phylogenetic
theory (like [93, 94, 135]) for detecting recombination or recombinants. As I men-
tioned in the Section 1.3 of Chapter 1, the JHMM (a variant of HMM) is the first
systematic attempt to quantify the var recombination. Compared with other related
work ([42, 59, 61]) of var genes, the JHMM is a well-designed statistical approach
to detecting the recombination events and related breakpoints, it also applies to the
DBL𝛼 domains, and can handle a relatively large dataset. Therefore, it is neces-
sary to know the corresponding principles. In the following, I introduce basic HMM
firstly, followed by a review of HMM’s extensive applications in modelling the re-
combination of various organisms. I finally conclude this section with a detailed
review of the JHMM.

2.2 Hidden Markov model in modelling recombina-

tion

The hidden Markov model was initially introduced by Baum and his colleagues in the
late 1960s [136–140], and was first applied to speech recognition at the 1970s [141–
145], where human speech could be recognized and converted to the corresponding
text message. The basic HMM theory and details for practical application in speech
recognition were then reviewed by Rabiner in 1989 [146]. In the late 1980s, HMM
started to be applied to biological sequence analysis [147], and then had become
especially popular in bioinformatics [120, 148]. This thesis also focuses on HMM in
biological sequences, particularly its application in the sequence alignment.
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2.2.1 HMM and its three fundamental problems

The hidden Markov model describes the generation of a sequence of visible symbols
(‘observations’) from a sequence of hidden internal factors (‘states’). Therefore, an
HMM consists of two layers, one for observation and one for the underlying hidden
state. The observation layer is explained by the hidden state layer under HMM
framework.

We denote a length 𝐿 observed sequence as y = 𝑦1𝑦2...𝑦𝐿, 𝑦𝑡 is the 𝑡 th symbol of y.
Its putative hidden state sequence (also called ‘path’) is x = 𝑥1𝑥2...𝑥𝐿, where the
𝑡 th hidden state 𝑥𝑡 generates symbol 𝑦𝑡. For any 1 ≤ 𝑡 ≤ 𝐿, 𝑦𝑡 is one symbol from
observation set O = {𝑂1, 𝑂2, ..., 𝑂𝑀}, while 𝑥𝑡 is one state from hidden state set
H = {𝐻1, 𝐻2, ..., 𝐻𝑁}. Here 𝑀 and 𝑁 represent the number of all possible distinct
observations and hidden states, respectively.

There are two critical assumptions in HMM. Firstly, we assume the hidden path fol-
lows a (first-order) Markov chain. The probability of entering into the current hidden
state only relies on the hidden state in the previous time point and is independent
of all other previous states.

Pr(𝑥𝑡+1 | 𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2, ..., 𝑥1) = Pr(𝑥𝑡+1 | 𝑥𝑡) (2.1)

Secondly, the probability of observing 𝑦𝑡 only depends on its hidden state 𝑥𝑡 at the
same time, so it is conditionally independent of any other observations or other
states.

Pr(𝑦𝑡 | 𝑥1, ..., 𝑥𝑡, ...𝑥𝐿, 𝑦1, ..., 𝑦𝑡−1, 𝑦𝑡+1, ..., 𝑦𝐿) = Pr(𝑦𝑡 | 𝑥𝑡) (2.2)

With these assumptions, a basic HMM now could be characterized by the following
three components [146]:

1. 𝑁 × 𝑁 “transition” matrix A = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 = Pr(𝑥𝑡+1 = 𝑗 | 𝑥𝑡 = 𝑖).
Each 𝑎𝑖𝑗 refers to the probability of hidden state 𝑖 transits to hidden state 𝑗,
𝑖, 𝑗 ∈ H, each row of A sums to 1.

2. 𝑁×𝑀 “emission” matrix E = [𝑒𝑖(𝑦)], where 𝑒𝑖(𝑦) = Pr(𝑦𝑡 = 𝑦 | 𝑥𝑡 = 𝑖), 𝑦 ∈ O.
Each observed symbol comes from a probability distribution over all symbols
given the hidden state,

∑︀
𝑦

𝑒𝑖(𝑦) = 1 for a fixed 𝑖.
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3. Initial probabilities of starting from various hidden states π. 𝜋𝑖 = Pr(𝑥1 = 𝑖),
s.t.

∑︀
𝑖∈H

𝜋𝑖 = 1

Therefore, an HMM is defined by these three parameters

𝜆 = {A,E, π}. (2.3)

Once we have an HMM, there are three basic problems to be addressed in real-world
applications. I introduce them with solutions in turn as below.

2.2.1.1 Decoding: Viterbi algorithm

The first problem is that we are interested in the underlying hidden path instead
of the observation. The task of predicting hidden state sequence given a particular
observation and an HMM is called decoding. In HMM, many paths might give rise
to a single observation sequence, and each path has a probability. In the decoding
task, we want to find out the most probable path that generates this observation,
that is, the path with the largest probability. More formally:

Decoding: Given an HMM 𝜆 = {A,E, π}, and a sequence of observations y =

𝑦1𝑦2...𝑦𝐿, get a hidden state sequence x* = 𝑥*
1𝑥

*
2...𝑥

*
𝐿, s.t.

x* = argmax
x

Pr(y,x | 𝜆).

Viterbi algorithm [149] is the most popular solution [148] to this problem, and
I introduce it here. This algorithm uses a dynamic programming technique that
efficiently computes the most probable path (‘Viterbi path’). It only needs to fill
in a 𝑁 × 𝐿 trellis. Each row refers to a hidden state, and each column represents
a symbol from the observation sequence. Every entry of this trellis sums up all
possible transitions to a particular symbol from all hidden states at the previous
time.

Specifically, suppose 𝑣𝑖(𝑦𝑡) represent the probability of the most probable path end-
ing in state 𝑖 with observation 𝑦𝑡, then the corresponding probability for next symbol
𝑦𝑡+1 with hidden state 𝑗 is

𝑣𝑗(𝑦𝑡+1) = max
𝑖

𝑣𝑖(𝑦𝑡)𝑎𝑖𝑗𝑒𝑗(𝑦𝑡+1) (2.4)
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The probability for the most probable path is calculated by comparing 𝑣𝑥(𝑦𝐿) over all
hidden states, in other words, the last column of the trellis. Regarding the Viterbi
path, we record the pointer which approaches it for each trellis entry. Then, an
optimal path is found by backtracking until the first symbol. Since there are 𝑁

transitions to each entry, the complexity of this algorithm is 𝑂(𝑁2𝐿).

2.2.1.2 Likelihood computation: forward algorithm

Likelihood computation: Given an HMM 𝜆 = {A,E, π}, and a sequence of
observations y = 𝑦1𝑦2...𝑦𝐿, get the likelihood Pr(y | 𝜆).

The second problem in HMM is determining the probability of observing a particu-
lar observation sequence given an HMM. Here I describe an efficient approach called
the forward algorithm. This algorithm also requires filling in a 𝑁 × 𝐿 trellis where
each row refers to a hidden state and each column refers to a symbol of the obser-
vation sequence. Suppose the 𝑓𝑖(𝑦𝑡) (called forward variable) represents the joint
probability of observing the partial sequence from 𝑦1 up to 𝑦𝑡, with the hidden state
𝑖 for symbol 𝑦𝑡, i.e.

𝑓𝑖(𝑦𝑡) = Pr(𝑦1...𝑦𝑡, 𝑥𝑡 = 𝑖) (2.5)

𝑓𝑗(𝑦𝑡+1) is the summation of the probabilities across all hidden states from previous
time step transiting to current step.

𝑓𝑗(𝑦𝑡+1) =
∑︁
𝑖

𝑓𝑖(𝑦𝑡)𝑎𝑖𝑗𝑒𝑗(𝑦𝑡+1) (2.6)

Therefore, the likelihood of the observation under the HMM parameters is the sum
of the last column, Pr(y | 𝜆) =

∑︀
𝑖∈H

𝑓𝑖(𝑦𝐿). Comparing this algorithm with the

Viterbi algorithm makes it not difficult for us to find the similarities and differences.
Overall, these two are very analogous. The major difference is that the forward
algorithm replaces all the max steps of the Viterbi algorithm with sum. Finally,
the forward algorithm complexity is also 𝑂(𝑁2𝐿).

Opposite the forward variable is the backward variable. It is also a useful quantity.
We denote 𝑏𝑖(𝑦𝑡) as the backward variable, representing the probability of observing
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remaining symbols 𝑦𝑡+1, 𝑦𝑡+2...𝑦𝐿 given the hidden state 𝑖 for observing 𝑦𝑡,

𝑏𝑖(𝑦𝑡) = Pr(𝑦𝑡+1, 𝑦𝑡+2...𝑦𝐿 | 𝑥𝑡 = 𝑖) (2.7)

Using both forward and backward variables is the key to solving a practical problem
called posterior decoding. It aims to determine the most probable hidden state for
a particular observed symbol 𝑦𝑡, and has a wide range of real-world applications
in various questions. In fact, the product of forward and backward variables helps
to obtain the probability of 𝑡th symbol with any hidden state given an observation
sequence. i.e. Pr(𝑥𝑡 = 𝑖 | y).

Pr(𝑥𝑡 = 𝑖 | y) = Pr(y, 𝑥𝑡 = 𝑖)

Pr(y)

=
Pr(𝑦1...𝑦𝑡, 𝑥𝑡 = 𝑖) Pr(𝑦𝑡+1...𝑦𝐿 | 𝑦1...𝑦𝑡, 𝑥𝑡 = 𝑖)

Pr(y)

=
Pr(𝑦1...𝑦𝑡, 𝑥𝑡 = 𝑖) Pr(𝑦𝑡+1...𝑦𝐿 | 𝑥𝑡 = 𝑖)

Pr(y)

=
𝑓𝑖(𝑦𝑡)𝑏𝑖(𝑦𝑡)

Pr(y)
.

(2.8)

Likewise, there is a backward algorithm. Here we skip the details of this algorithm
for reasons of brevity. Please see [148] for a comprehensive introduction. The major
utility of the backward algorithm is to check the correctness of programming since
it also provides the likelihood of an emitted sequence like the forward algorithm.

2.2.1.3 Learning: Baum-Welch algorithm

Previous decoding and likelihood computation both assume an HMM has already
been provided. However, we generally do not know the HMM parameters, i.e.,
transition matrix A, emission matrix E and initial probabilities π. We normally only
observe a sequence and might have a possible hidden state set from prior knowledge.
Regardless of decoding or likelihood, we all need to get reasonable matrices for
an HMM in the first place. The problem for obtaining HMM parameters given
observations is called learning.

25



Chapter 2

Learning: Given a sequence of observation y = 𝑦1𝑦2...𝑦𝐿 and hidden state set, get
HMM parameters 𝜆 = {A,E, π} s.t. 𝜆 = argmax

𝜆′
Pr(y | 𝜆′).

The learning problem is simple when the hidden path for the observed sequence is
known. We denote 𝐴𝑖𝑗 as the count of transitions from hidden state 𝑖 to 𝑗 from the
data, and 𝐸𝑖(𝑦) as the count of observing symbol 𝑦 with hidden state 𝑖. The tran-
sition and emission parameters are obtained by the maximum likelihood estimation
method, i.e.

𝑎𝑖𝑗 =
𝐴𝑖𝑗∑︀

𝑗′
𝐴𝑖𝑗′

and 𝑒𝑖(𝑦) =
𝐸𝑖(𝑦)∑︀

𝑦′
𝐸𝑖(𝑦′)

(2.9)

In practice, we do not know the hidden path of observations. Therefore, we need
to learn from observed sequences and get parameters estimated in an iterative way.
Here I introduce a well-developed iteration method called Baum-Welch algorithm
[140]. Since it combines the forward and backward variables, this method is also
called the forward-backward algorithm.

The Baum-Welch algorithm is a special case of the Expectation Maximization (EM)
technique [150]. With a set of initial parameters, the Baum-Welch algorithm cal-
culates expected transition and emission count (E-step); afterwards, it recomputes
a new set of HMM parameters with Equation 2.9 (M-step). Overall, this algorithm
keeps updating parameters by iteration, and the likelihood of the data with param-
eters increases simultaneously. At the E-step, from Equation 2.8, we can sum over
all positions 𝑡 to get the 𝐸𝑖(𝑦)

𝐸𝑖(𝑦) =
∑︁

{𝑡|𝑦𝑡=𝑦}

𝑓𝑖(𝑦𝑡)𝑏𝑖(𝑦𝑡)

Pr(y)
(2.10)

Regarding the expected transition count, we introduce a quantity Pr(𝑥𝑡 = 𝑖, 𝑥𝑡+1 =

𝑗 | y) representing the probability of adjacent observations with hidden state 𝑖 and
𝑗 given an observation sequence [148].

Pr(𝑥𝑡 = 𝑖, 𝑥𝑡+1 = 𝑗 | y) = Pr(𝑥𝑡 = 𝑖, 𝑥𝑡+1 = 𝑗,y)
Pr(y)

=
𝑓𝑖(𝑦𝑡)𝑎𝑖𝑗𝑒𝑗(𝑦𝑡+1)𝑏𝑗(𝑦𝑡+1)

Pr(y)
(2.11)
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Likewise, we are now able to derive 𝐴𝑖𝑗 by summing over all positions 𝑡,

𝐴𝑖𝑗 =
∑︁
𝑡

𝑓𝑖(𝑦𝑡)𝑎𝑖𝑗𝑒𝑗(𝑦𝑡+1)𝑏𝑗(𝑦𝑡+1)

Pr(y)
(2.12)

Note that if there are multiple observation sequences, we add the expected count to-
gether across all training sequences. Although for brevity, in this thesis I describe the
Baum-Welch algorithm with only an observation sequence, a more detailed tutorial
with multiple sequences is in [148].

1) Initialization: Arbitrary A, E, π

2) Recursion:

(a) Calculate 𝑓𝑖(𝑦𝑡) and 𝑏𝑖(𝑦𝑡) under current HMM parameters.

(b) Record the likelihood of data with current parameters.

(c) Compute expected transition count 𝐴𝑖𝑗 and emission count 𝐸𝑖(𝑦) using
Equation 2.12 and 2.10 respectively.

(d) Update the parameters with Equation 2.9.

3) Termination: Stop when the number of iterations exceeds a predefined inte-
ger or the change of likelihood is less than a specified threshold.

At the end of this section, I briefly introduce an alternative to the Baum-Welch
algorithm called Viterbi training [148, 151]. It is also an iterative method used
for the learning problem in HMM. Viterbi training computes the transition and
emission counts using only a single path — Viterbi path. By contrast, the Baum-
Welch algorithm derives parameters by considering all paths. In each iteration, the
Viterbi training algorithm computes the Viterbi path of the training sequence and
updates parameters from this path using Equation 2.9. The algorithm stops when
the Viterbi path does not change or the number of iterations is larger than a specified
number.

Therefore, the essential difference between Baum-Welch and Viterbi training algo-
rithms is that the former maximizes the likelihood, while the latter maximizes the
contribution to the likelihood from the Viterbi path. For this reason, Viterbi train-
ing is slightly less accurate, but it is between one and two orders of magnitude faster
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[152] than the Baum-Welch algorithm and has widespread applications in practice
[153].

2.2.2 HMMs in modelling recombination

HMM is a popular tool for modelling recombination in various living organisms,
such as bacteria, viruses and parasites [54, 93, 120, 132–135, 154, 155]. Although
the complexity of sequences varies across species/genes, the statistical characteristics
of HMM still facilitate widespread applications.

Husmeier and McGuire [93] introduced a Bayesian hidden Markov model to detect
breakpoint regions in bacteria genes. Recombination causes the genealogies to vary
along the sequence (or genome). They treated the tree topology as the hidden
state, the change of tree topologies in the inferred optimal path was indicative of
recombination. However, the number of input sequences this method could handle is
limited. A similar phylogenetic HMM algorithm was proposed to detect recombinant
rice genomes [135]. Its biggest bottleneck is still the rapidly growing running time
and memory usage when the number of input sequences increases. Didelot and
Wilson [94] proposed ClonalFrameML to detect recombination breakpoints using the
whole genome sequences of bacteria. They reconstructed a ML tree with inferred
ancestral sequences of all internal nodes and branch lengths. With this tree, a
hidden Markov model was then used to infer the recombination parameters and
hidden status (recombinant and un-recombinant) among sites. However, it might
underestimate the recombination rate for a dataset with frequent recombination.

Boussau et al. [155] introduced Phylo-HMM to accurately locate the recombination
breakpoints and applied it to HIV viruses. In this method, a matrix showing the
likelihood of each tree topology at each site was firstly generated. If there is a
recombination, the most probable tree topologies for stretches of sites would be
different before and after the breakpoint. Therefore, partitioning the matrix into
the most likely site segments was next conducted. Note that this method requires
an input alignment and the number of trees that best describe this alignment, which
are not applicable to our dataset.

Allred et al. [132] proposed incorporating HMM to identify the recombinant al-
phaviruses and flaviviruses. They trained a HMM on a set of non-recombinant virus
genomes so that the model was parameterized with transition/emission probabilities
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and a pre-specified recombination parameter. Each virus genome was considered as
a hidden state. The Viterbi algorithm was used to find the new genome’s most prob-
able path. The change of path from one virus to another indicated a recombination
event.

Li and Stephens [120] proposed an HMM to model the haplotype diversity. This
model assumed each haplotype was copied from ‘reference’ haplotypes across all
SNP locus along the chromosome. The change of copying haplotypes from one to
another represented a recombination event. Schultz et al. [133] then developed an
advanced HMM to map each new sequence to its nearest individual sequences in
the input alignment. For capturing the information of all members of each subtype,
researchers [133] employed the profile HMM [156]. A query sequence’s optimal path
consisted of a series of subtypes. The breakpoint was inferred by the ‘jump’ from one
subtype to another. Because of these characteristics, this method is called jumping
profile HMM. Afterwards, they extended this model to deal with viruses with circular
genomes [134].

The first systematic work for modelling the recombination of DBL𝛼 domains was
conducted by Zilversmit et al. [54]. They proposed the jumping HMM (JHMM)
to estimate the recombination rate and detect the recombination breakpoints. Its
principle is similar to Li and Stephens [120], but more characteristics are attached
to each hidden state, for instance, the position of each specific reference sequence.
Importantly, JHMM is the foundation of our work for detecting recombination and
recombinants of DBL𝛼 tags. Since Zilversmit’s model heavily relies on the pair HMM
and Li and Stephen’s model [120], I illustrate these two models below followed by
Zilversmit’s model.

Pair HMM In biology, determining whether two biological sequences are related
is a basic task [148], and this requires us to assess the similarity of these two se-
quences that may indicate the functional, structural, or evolutionary relationships.
To achieve this, pairwise (sequence) alignment is a way of mapping positions in the
two sequences to each other (See Figure 2.1 as an example). Searching for shared
domains or motifs between two proteins is a crucial problem, and the alignment of
proteins would help to solve it; pairwise alignment of DNA sequences is particularly
useful in studying conserved regions and polymorphisms. Generally the alignment
with amino acids is more preferable than the alignment with DNA [157]. Overall,
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pairwise alignment has become one of the most fundamental operations of bioinfor-
matics [158]. There are a variety of algorithms to get two sequences aligned, such as
maximal unique match, word methods, dot-matrix methods and dynamic program-
ming [159]. In this thesis, I describe an extensively used dynamic programming
technique called pair hidden Markov model (pair HMM).

Y – E R N Q R E D P P L G
Y F E R – – R E H P P L G

M D MM I I MMMMMMM

Figure 2.1: An example alignment of two proteins. Original two sequences
(represented by first two rows) have unequal length. Pairwise alignment introduces
gaps (insertions and deletions) and results in aligned sequences with the same
length. The bottom row is a hidden state path from a pair HMM point of view.

The pair HMM is a variant of basic HMM. There are three hidden states in pair
HMM — match (𝑀), insert (𝐼) and delete (𝐷). Assume two observed sequences
y = 𝑦1𝑦2...𝑦𝐿𝑦 and z = 𝑧1𝑧2...𝑧𝐿𝑧 , when the hidden state is 𝑀 , it emits a pair of
symbols (𝑦, 𝑧). These two symbols are not necessarily the same. When the hidden
state is 𝐼, it emits (𝑦,−), representing a symbol in the sequence y is inserted. When
the hidden state is 𝐷, (−, 𝑧) is emitted, indicating a symbol in the sequence z is
inserted, or conversely, a deletion happens in the first sequence y.

Generally, there is no transition between the insert and delete states. We denote 𝛿

as gap opening probability (𝑀 to 𝐼, 𝑀 to 𝐷), and 𝜖 as the probability of staying
in a gap, or gap extension probability (𝐼 to 𝐼, 𝐷 to 𝐷). The resulting transition
probabilities among hidden states are shown in Table 2.1. Besides, there are two
sets of emission distributions for hidden states. If 𝑀 , the aligned pair of symbols are
sampled from a discrete distribution using amino acid or DNA substitution scoring
matrix. If 𝐼 or 𝐷, the inserted symbol is sampled from an equilibrium distribution
of 20 amino acids or 4 nucleotides. When we compare the general HMM and pair
HMM, standard HMM only generates a single sequence, and pair HMM emits an
aligned pair of sequences (Figure 2.1).

Table 2.1: Transition probabilities in pair HMM.

𝑀 𝐼 𝐷

𝑀 1− 2𝛿 𝛿 𝛿
𝐼 1− 𝜖 𝜖 -
𝐷 1− 𝜖 - 𝜖
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H1

H2

H3

Figure 2.2: Illustration of haplotype is created by an imperfect mosaic
of source haplotypes. This figure is a minor modification of Figure 2 from
[120]. Each row represents a haplotype. Each column denotes a biallelic locus,
colored by black and white. Haplotype 𝐻3 is inferred to have copied from source
haplotype 𝐻1 for the first two alleles (colored by red) and source haplotype 𝐻2 for
the remaining two (colored by blue), with a recombination event in between. The
second allele from the left of 𝐻3 is imperfectly copied, due to a mutation event.

Nowadays, pair HMM has been widely used in many sequence analysis problems,
such as alignment of multiple sequences [160–163], filtering out unreliable alignment
columns [160], gene prediction and annotation [164–168]. More recently, there are
several studies [169–172] to accelerate the probability calculation with the forward
algorithm. Pair HMM is promising for broader applications soon.

2.2.2.1 Li and Stephens’ model

Suppose there are 𝑁 sampled haplotypes typed at 𝐿 loci, 𝐻1, 𝐻2, ..., 𝐻𝑁 . For 𝑛th
haplotype 𝐻𝑛, 𝑛 ∈ {1, 2, ..., 𝑁}, we denote its 𝑙th locus (𝑙 ∈ {1, 2, ..., 𝐿}) by ℎ𝑛

𝑙 so
that 𝐻𝑛 = ℎ𝑛

1 ...ℎ
𝑛
𝐿. To model recombination among haplotypes, Li and Stephens

[120] assumes that each haplotype 𝐻𝑘+1 is built by an imperfect copying process
from ‘reference’ (source) haplotypes 𝐻1, 𝐻2, ..., 𝐻𝑘. See Figure 2.2 as an illustration.
With this assumption, a hidden Markov model is used to compute the probability
of Pr(𝐻𝑘+1 | 𝐻1, 𝐻2, ..., 𝐻𝑘), which further aids the likelihood computation.

The hidden state set is the source haplotype indices H = {1, 2, ..., 𝑘}. Each locus of
haplotype 𝐻𝑘+1 is considered to be copied from one of the source haplotypes at that
site, the specific haplotype is unknown and therefore designed as the hidden state
of HMM.
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Transition probability The initial step is to choose which haplotype to copy at
the first site, Li and Stephens [120] determines the starting point of all the source
haplotypes uniformly. Suppose 𝑥𝑙 (1 ≤ 𝑙 ≤ 𝐿, 𝑥𝑙 ∈ H) denote which haplotype 𝐻𝑘+1

copies at site 𝑙, Pr(𝑥1 = 𝑥) = 1
𝑘
, 𝑥 ∈ {1, 2, ..., 𝑘}. After copying a SNP site, the next

site is always copied from the next one of the same haplotype; however, with a small
probability, it is copied from any other haplotype representing recombination. Gen-
erally, the smaller the genetic distance between two sites, the higher the probability
that it copies from the same haplotype.

𝑃 (𝑥𝑙+1 = 𝑥′ | 𝑥𝑙 = 𝑥) =

⎧⎨⎩𝑝𝑙 +
1
𝑘
(1− 𝑝𝑙) 𝑥′ = 𝑥

1
𝑘
(1− 𝑝𝑙) otherwise

(2.13)

where 𝑝𝑙 = exp(−4𝑁𝑐𝑙𝑑𝑙
𝑘

), 𝑁 is the effective population size, and 𝑐𝑙 is the recombi-
nation rate per unit of physical distance, 𝑑𝑙 is the physical distance between sites 𝑙

and 𝑙 + 1.

Emission probability After choosing a haplotype, with a certain probability, an
exact copy occurs; otherwise, a mutation occurs. Specifically, the emission proba-
bility is given by:

Pr(ℎ𝑘+1
𝑙 = ℎ | 𝑥𝑙 = 𝑥,𝐻1, ..., 𝐻𝑘) =

⎧⎨⎩
𝑘

𝑘+𝜃
+ 𝜃

2(𝑘+𝜃)
ℎ𝑥
𝑙 = ℎ

𝜃
2(𝑘+𝜃)

ℎ𝑥
𝑙 ̸= ℎ

(2.14)

where 𝜃 = (
∑︀𝑁−1

𝑠=1
1
𝑠
)−1, 𝑁 is the total number of haplotypes. This 𝜃 results in a

prior with an average of 1 for the expected number of mutations per segregating site
[120].

Li and Stephens [120] use the following identity to compute the likelihood,

Pr(𝐻1, 𝐻2, ..., 𝐻𝑁 | 𝜌) = Pr(𝐻1 | 𝜌)𝑃 (𝐻2 | 𝐻1; 𝜌)...Pr(𝐻𝑁 | 𝐻1, ..., 𝐻𝑁−1; 𝜌)

(2.15)
where 𝜌 denotes the recombination parameter. This formula transforms the proba-
bility distribution of haplotypes to a series of conditional probabilities. Researchers
assumes the first term Pr(𝐻1 | 𝜌) is independent of 𝜌 and equals to 1/2𝐿, for remain-
ing conditional probabilities, they propose the above HMM framework and calculate
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them using the forward algorithm. In this way, maximizing the product of condi-
tional likelihoods yields the estimate of parameter 𝜌. With estimated parameter, we
are able to identify the recombination hotspots.

Overall, this model created by Li and Stephens has many advantages and has been
applied to numerous problems [173–183]. It is easy to comprehend and quick to
compute; it models both constant and variable recombination rate scenarios; and
most importantly, it helps describe linkage disequilibrium (LD) patterns, as it over-
comes various limitations of existing methods for modelling LD. Price et al. [173]
extended Li and Stephens’ model and proposed HAPMIX for inferring the local ances-
try in admixed populations. However, this model can only infer from two admixed
groups, Salter-Townshend and Myers [174] recently improved this model with a
method called MOSAIC. It modelled the admixture with high precision from an ar-
bitrary number of populations. There are other applications such as the genotype
imputations using reference sequences [180, 181], the inference of genealogical history
[175, 176, 178] and gene conversion rate estimation [182, 183].

2.2.2.2 The JHMM in Zilversmit’s model

Zilversmit et al. [54] proposed the jumping hidden Markov model (JHMM) to un-
cover the evolutionary relationships of the DBL𝛼 domain across species. This
method combines Li and Stephens’ model to account for recombination effects and
pair HMM to handle unequal-length sequences. The key assumption of the JHMM
is that each sequence (‘target’) is constructed from reference (‘source’) sequences,
allowing substitutions, insertions and deletions (indels) in the target sequence and
jumps between source sequences representing recombination.

There are similarities and notable differences in the mechanism between the JHMM
and Li and Stephens’ model. Both models consider each character as a copy of the
character of the source sequence. After copying a character from a source sequence,
it usually copies the next character from the same source sequence. However, with a
small probability, it copies from other characters of any other source sequence. The
copy is either the same or a mismatch. However, the major difference between these
two models is the range of characters which could be copied. Li and Stephens’ model
copies character only from that specific site of input alignment, while the JHMM
could copy character from everywhere of source sequences.
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The hidden state of the JHMM is the position of the character from the source
sequence (which is copied). See Table 2.2 for important variables of the JHMM.
Specifically, we denote 𝑠𝑗𝑘 as the hidden state at ith character of target sequence
𝑥. If 𝑠 = 𝑀 , the hidden state 𝑀 𝑗

𝑘 emits character 𝑥(𝑖) given 𝑦𝑘(𝑗) . If 𝑠 = 𝐼, the
hidden state 𝐼𝑗𝑘 emits character 𝑥(𝑖), representing that 𝑥(𝑖) is inserted in 𝑥. If 𝑠 = 𝐷,
the hidden state 𝐷𝑗

𝑘 does not emit a character on target, representing a character
is deleted at 𝑥. When the hidden state emits a character, the character is sampled
based on the emission probability distribution.

Table 2.2: JHMM notation.

Variable Meaning Range Note

i Index for position in target 𝑖 ∈ {1, ...,𝑚} 𝑥(𝑖) is the ith character in the
target sequence x of length 𝑚

k Index for source sequence 𝑘 ∈ {1, ..., 𝑛} 𝑦𝑘 is the kth source sequence
(length is 𝑙𝑘) in dataset 𝑌

j Index for position in source 𝑗 ∈ {1, ...,max
𝑘

𝑙𝑘} 𝑦𝑘(𝑗) is the j th character in 𝑦𝑘

𝑠 Match, insert and delete states 𝑠 ∈ {𝑀, 𝐼,𝐷}

The change of elements 𝑠, 𝑘, 𝑗 in the hidden state indicates various events. Specifi-
cally, the change of source sequence 𝑘 in the hidden state path represents a recom-
bination event. The switch of 𝑠 represents an indel event. For instance, change from
match to insert/delete state (𝑀 → 𝐼, 𝑀 → 𝐷) indicates a gap opening event while
multiple consecutive insert/delete states (𝐼 → 𝐼, 𝐷 → 𝐷) infer a gap extension
event. Finally, the change of position 𝑗 suggests copying from one site to another.

Transition probability For the initialization of the hidden state sequence, a
position in a source sequence is chosen uniformly at random from all positions. With
probability 𝜋𝑀 , the path starts with a match state; with probability 𝜋𝐼 = 1 − 𝜋𝑀 ,
the path starts with an insert state. The hidden state in the next time step is
conditional on the current hidden state. Specifically,

• Suppose the current hidden state is 𝑀𝑘(𝑗), the next hidden state will be

– a match with the next position, or

– an insertion with probability 𝛿 (gap opening probability), or

– a deletion with probability 𝛿, or
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– a recombination with overall probability 𝜌 (probability of recombination)
across all positions, or

– a termination with probability 𝜏 (called termination probability).

• Suppose the current hidden state is 𝐼𝑘(𝑗), the next hidden state will be

– a match with the next position, or

– an insertion with probability 𝜖 (gap extension probability), or

– a recombination with overall probability 𝜌 across all positions, or

– a termination with probability 𝜏 .

• Suppose the current hidden state is 𝐷𝑘(𝑗), the next hidden state will be

– a match with the next position, or

– a deletion with probability 𝜖.

Table 2.3: Transition probabilities from a given hidden state (rows) at
a current time step to all possible hidden states (columns) at next time
step. 𝑇 refers to termination.

𝑀 𝑗+1
𝑘 𝐼𝑗𝑘 𝐷𝑗+1

𝑘 𝑀𝑝
𝑘′ 𝐼𝑝𝑘′ 𝐷𝑝

𝑘′ 𝑇

𝑀 𝑗
𝑘 1-2𝛿-𝜌-𝜏 𝛿 𝛿 𝜌𝜋𝑀/𝐿 𝜌𝜋𝐼/𝐿 0 𝜏

𝐼𝑗𝑘 1-𝜖-𝜌-𝜏 𝜖 0 𝜌𝜋𝑀/𝐿 𝜌𝜋𝐼/𝐿 0 𝜏

𝐷𝑗
𝑘 1-𝜖 0 𝜖 0 0 0 0

Table 2.3 presents the transition probabilities among hidden states. Note that 𝑀𝑝
𝑘′

(same with 𝐼𝑝𝑘′ , 𝐷
𝑝
𝑘′) in this table refers to the hidden state representing a recombi-

nation, 𝑘′ ∈ {1, ..., 𝑛}, 𝑝 ∈ {1, ..., 𝑙𝑘′}. The overall number of positions the JHMM

could jump to is denoted by 𝐿, 𝐿 =
𝑛∑︀

𝑠=1

𝑙𝑠.

Emission probability We denote 𝑒(𝑥(𝑖) | 𝑦𝑘(𝑗)) as the emission probability for
observing 𝑥(𝑖) given 𝑦𝑗𝑘 from hidden state 𝑀 𝑗

𝑘 . With probability 𝛼 (a predefined
parameter), it copies the source; otherwise, each other letter has equal probability.
We denote 𝑒(𝑥(𝑖)) as the emission probability for observing 𝑥(𝑖) from 𝐼𝑗𝑘. 𝑒(𝑥𝑖) is
the base frequency distribution which is calculated from the character composition
of target sequence 𝑥.

To train the parameters of the JHMM, 𝛿 and 𝜖 are estimated firstly using the Baum-
Welch algorithm (see Section 2.2.1.3), with 𝜌 set to zero. Next, with 𝛿 and 𝜖, a
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surface of ‘composite’ likelihood (product of the likelihood of each target) on a grid
of 𝜌 (from 0 to 0.1) is calculated. The one corresponding to the largest likelihood
is chosen as 𝜌. Default values 0.75, 0.25 and 0.001 are assigned to 𝜋𝑀 , 𝜋𝐼 and 𝜏

separately. Once the parameters are trained, the Viterbi algorithm is then used
to find the most likely path of source sequences for each target sequence. Below
Figure 2.3 illustrates an instance of mosaic output in which a target is built from
three source sequences. The substitution, insertion and deletion are colored brown,
red and blue separately.

Target A G T C K D I M M M - F

Source1 A G T T

Source2 K D - M

Source3 M M K F

Figure 2.3: An example mosaic representation of the JHMM. In this
example, the target sequence is aligned to three segments, and each of them is
from a source sequence of the reference dataset.

Notably, the mosaic representation provides information on whether the target se-
quence is recombinant or not, when the source sequences are older than the target
sequence. If there is more than one source sequence in the mosaic representation of
a target sequence, we can infer this target is a recombinant. In contrast, when the
input sequences are from the same time point, we cannot identify the recombinant
from mosaic representations any more, since the target and source sequence are both
possible to be recombinant (see Section 3.5.1.1 of the following chapter).

The JHMM is the first model that “paints” each DBL𝛼 domain with its closest source
sequences. Garimella et al. [184] later used this model with all default parameters
(default 𝛿 = 0.025, 𝜖 = 0.75, 𝜌 = 0.0001) for variant calling. They applied to the
sequences from P. falciparum crosses and identified nonallelic recombination and
mutation patterns. Tonkin-Hill et al. [62] applied Zilversmit’s model to explore pop-
ulation structures around the world using DBL𝛼 tags from ten countries, a series of
strategies were proposed to speed up the parameter estimation due to the infeasible
running time posed by large data sizes.

We followed the strategies of [62] and applied Zilversmit’s model to our large Ghana
pilot data. With the generated mosaic representations, we analyzed a variety of
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DBL𝛼 recombination patterns. For instance, we explored the recombination fre-
quencies per tag, the breakpoint distribution along the tag, and the jumping dis-
tance from one source to another per recombination. We also compared these results
with the patterns using global data in [62]. Note that although Tonkin-Hill et al.
[62] had already applied the Zilversmit’s model to the global data, their analysis
about DBL𝛼 recombination is limited (due to different research purposes). So we
analyzed the recombination patterns from both datasets.

Through the comparison of these recombination patterns, we found very consistent
results. The estimated JHMM parameters, breakpoint distributions along the tag,
recombination frequencies per tag and jumping distance distributions are all similar
across these two datasets, see Appendix A for more details.

2.3 Discussion

This chapter outlines the existing methods for detecting recombination and recom-
binants among sequences or var genes specifically. We summarize that none of them
(except the JHMM) is suitable for dealing with our dataset mainly due to the ex-
treme diversity and large sample size. Since the jumping hidden Markov model is
the only method that models the recombination of DBL𝛼 domains systematically,
this chapter introduces basic HMM and examines this JHMM.

The major advantage of the JHMM is that it makes it possible to detect recom-
bination breakpoints from diverse DBL𝛼 domains. However, the JHMM was only
designed to detect recombination events, not which sequences are recombinant, when
the input sequences are from the same time point. For each generated mosaic rep-
resentation, although the recombination breakpoints are known, it is still unclear
whether the target (or source) sequence is recombinant or not. As described in the
project aim (Section 1.3), if we could identify recombinant sequences, this would
enable us to explore the characteristics of recombinants; clear separation of recom-
binant and non-recombinant sequences would also facilitate the comparison of their
structure and function. In the following Chapter 3, we introduce an algorithm for
detecting recombinants when the sequences are from the same time.

The training of the JHMM parameters can become slow when the dataset is large
and/or the sequences are long. The JHMM complexity is dominated by the Baum-
Welch algorithm used to estimate parameters. Each iteration of the algorithm is
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𝑂(𝑛2𝑙2) in time and memory [54], where 𝑛 is the number of sequences and 𝑙 is the
average sequence length. Although Tonkin-Hill et al. [62] proposed to replace the
Baum-Welch algorithm with faster Viterbi training algorithm, their impact on model
accuracy (estimated parameters, mosaic representations) is unclear. Moreover, the
JHMM allows the jump to any sequence position representing recombination. In
fact, recombination in DBL𝛼 tags does not occur in such an unfettered manner (see
Appendix A.2.2.4). Therefore, constraints must be added to make this model more
time efficient and biologically relevant. This has prompted us to propose a revised
JHMM described in Chapter 4.
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An accurate method for identifying

recent recombinants from unaligned

sequences

Abstract

Motivation: Recombination is a fundamental process in molecular evolution, and
the identification of recombinant sequences is thus of major interest. However,
current methods for detecting recombinants are primarily designed for aligned se-
quences. Thus they struggle with analyses of highly diverse genes, such as the var
genes of the malaria parasite Plasmodium falciparum, which are known to diversify
primarily through recombination.
Results: We introduce an algorithm to detect recent recombinant sequences from
a dataset without a full multiple alignment. Our algorithm can handle thousands of
gene-length sequences without the need for a reference panel. We demonstrate the
accuracy of our algorithm through extensive numerical simulations; in particular,
it maintains its effectiveness in the presence of insertions and deletions. We apply
our algorithm to a dataset of 17,335 DBL𝛼 types in var genes from Ghana, observ-
ing that sequences belonging to the same ups group or domain subclass recombine
amongst themselves more frequently, and that non-recombinant DBL𝛼 types are
more conserved than recombinant ones.
Availability: Source code is freely available at https://github.com/qianfeng2/de
tREC_program.
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3.1 Introduction

Recombination, the exchange of genetic materials between two molecular sequences,
is a fundamental evolutionary process in viruses, prokaryotes, eukaryotes, and even
between kingdoms. The biological mechanisms of recombination, which differ across
different species, lead to the creation of novel ‘mosaic’ sequences in which different
regions have distinct evolutionary histories.

In population genetics, recombination plays a central role in shaping the patterns
of linkage disequilibrium, and thus recombination identification is of importance
for estimating recombination rates, quantitative trait loci and association studies
[120, 185]. Recombination also explains a considerable amount of the genetic di-
versity of human pathogens [186–188], such as the malaria parasite Plasmodium
falciparum [42, 189] or protozoan parasites [190]. It plays a central role for para-
sites to escape from host immune pressures, or adapt to the effects of antiparasitic
drugs. Characterisation of recombination events in these pathogens would aid in the
understanding of these evolutionary mechanisms.

Many methods have been developed for identifying recombination events and/or
recombinants (e.g., [97, 99, 109, 123, 191], see [121] for a review). They can be
roughly characterised into four paradigms:

1. Distance-based methods [89, 192, 193] look for inversions of distance patterns
among the sequences. They usually employ a sliding-window approach to
estimate distances and are generally computationally efficient.

2. Phylogenetic methods [109, 187, 194] look for discordant topologies in adjacent
sequence segments, which is taken as a sign of recombination.

3. Compatibility methods [103] test for phylogenetic incongruence on a site-by-
site basis.

4. Substitution distribution-based methods [96, 97, 99] use a test statistic to
examine adjacent sequence segments for signals of recombination.

Nearly all available methods require a multiple sequence alignment; this is commonly
available for population genetic datasets which have relatively low intra-population
diversity, but may be unreliable for datasets with higher diversity. Likewise, many of
the most commonly used methods, such as RDP [109] or 3SEQ [99], are triplet-based;
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that is, they test for recombination signals in each possible triplet of sequences,
which can become slow as modern-day datasets grow larger and larger. Finally,
some (though not all) methods (e.g., [89]) require a reference panel of known non-
recombinant sequences, which potential recombinants can be compared against. We
aim to develop a method which works directly on sequences without requiring a full
multiple sequence alignment or a reference panel, and is fast enough to be practical
for large datasets.

We focus on the specific application of detecting recombinants in the var genes of
Plasmodium falciparum. These genes express the Plasmodium falciparum erythro-
cyte membrane protein 1 (PfEMP1), which is the main target of the human immune
response to the blood stages of infection. The var genes are a large and diverse gene
family (up to 60 copies per genome), and high levels of diversity in the var genes
have been observed in a single parasite genome, as well as small local populations
[46, 74, 195, 196]. This diversity is driven primarily by homologous recombination
[42], and so an accurate identification of var recombinants is critical to understand-
ing the evolution of the system.

We focus on the DBL𝛼 domain, which is the only domain encoded by all (but
one) members of the var multigene family. This domain has been found to be im-
munogenic [67] and is crucial to understanding acquired immunity and potential for
vaccination [68]. Unfortunately, the DBL𝛼 domain is highly variable in terms of
both length and sequence composition, with datasets [62] containing tens of thou-
sands of disparate sequences. Under these conditions, multiple sequence alignments
constructed from these datasets are very unreliable, and a phylogenetic tree is not
an appropriate representation of their evolutionary history due to frequent recom-
bination. Thus, it is difficult to reconstruct an explicit evolutionary history of the
DBL𝛼 domain.

The first systematic attempt to map out recombination in var genes was performed
by Zilversmit et al. [54], who developed a method based on a jumping hidden Markov
model (JHMM) to align a sequence to its nearest relations in a reference dataset,
allowing jumps between sequences which represent recombination events. They used
this method to “paint” each sequence according its nearest relations. However, this
method does not identify the recombinant sequences themselves, only recombina-
tion events. An explicit identification of recombinants and non-recombinants would
enable direct comparison between them, helping to determine the effect of recombi-
nation on the structure and function of the gene.
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Because each sequence is considered individually, the JHMM is limited to the de-
tection of ‘recent’ recombination events; that is, recombinations whose signal can
be found only in one sequence in the dataset. In contrast, a single more ancient re-
combination may leave traces in multiple sequences, hindering the ability to detect
them. It is thus an unavoidable consequence that any method based on the infor-
mation provided by the JHMM is limited to the detection of recent recombinants,
i.e., the descendants of recent recombinations.

In this paper, we develop a new method to identify recent recombinants in a large
dataset of sequences, that does not require a multiple sequence alignment. This
method exploits the information produced by the JHMM method, combining it
with a distance-based comparison to identify recombinants. Extensive simulations
confirm the accuracy and applicability of our method, in particular in the context
of sequences with insertions and deletions. We also show that our method is more
accurate than many currently used methods. Finally, we apply our method to a large
dataset of DBL𝛼 sequences, producing several new biological results concerning the
patterns of recombination in this domain.

3.2 Methods

We propose a novel method to detect recombinant sequences in a set of protein or
DNA sequences for which a full multiple alignment is difficult to construct or unre-
liable. It takes as input a set of homologous sequences, and outputs the sequences
that are identified as recombinant, their putative parents, and the corresponding
breakpoints.

See Figure 3.1 for a graphical overview of our method. It consists of the following
steps:

1. We apply the JHMM method of Zilversmit et al. [54] to represent each sequence
as a ‘mosaic’ of segments from other sequences in the dataset.

2. We identify ‘recombinant triples’ which contain a recombinant segment and
its two parents. The mosaic representations provide pairwise alignments for
each of these triples, which we then complete to three-way alignments with
the MAFFT algorithm [197].
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segment 1 segment 2
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Identify triples

Figure 3.1: A schematic of the algorithm. From an input set of unaligned
sequences, we first use the JHMM method to represent each sequence as a mosaic of
other sequences. Next, we identify triples of segments, consisting of a recombinant
segment and its two parents, and complete their alignment with the MAFFT
algorithm. Finally, we identify the recombinant in each triple using a distance-
based approach.

3. Using a distance-based approach, we identify the recombinant sequence in each
triple.

Note that extant sequences are identified as the ‘parents’ of the recombinant; more
accurately, we identify the descendants of the ancestral sequences which were the
parents of the recombination.

We discuss each step in detail in the following sections.

3.2.1 Calculating mosaic representations

We first use the jumping hidden Markov model of Zilversmit et al. [54]. In this model,
each character in a ‘target’ sequence is considered to be a copy from a character in
a sequence in a reference set (‘source’ sequences). The hidden state of the Markov
model is the (position of the) character which is copied. The copy may be imperfect,
representing mutation. After a character is copied, the next character in the target
sequence is usually copied from the next character in the same source sequence.
However, with small probabilities:
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• the source character may switch to any character in any position in another
sequence, representing recombination;

• the model switches to an ‘insertion’ state, where the target character is chosen
randomly and the source character does not move;

• the model switches to a ‘deletion’ state, where the source character moves
forward without being copied.

If the model is in an insertion or deletion state, it continues in this state until (with
a small probability per character) we return to copying characters from the current
source sequence.

We first estimate the parameters of the model, following Tonkin-Hill et al. [62]. The
parameters are the probabilities of gap initiation 𝛿, gap extension 𝜖, and recombina-
tion (source switching) 𝜌. We first set 𝜌 to zero, and compute maximum likelihood
estimates for 𝛿 and 𝜖 with the Baum-Welch algorithm (see [146]). We then calcu-
late the composite likelihood of all sequences for all values of 𝜌 over the interval
[0, 0.1] under the estimated 𝛿 and 𝜖, and choose the value of 𝜌 which maximises this
likelihood as our estimate 𝜌.

Finally, we calculate the Viterbi path for each target sequence to find the most
probable sequence of hidden states (copied characters, insertions, and deletions).
The result is a ‘mosaic’ alignment for each sequence to a series of segments from
the other sequences in the dataset. An example of this can be seen in Figure 2.3 of
Chapter 2.

For large-scale datasets, training the JHMM model is a significant bottleneck for
our method. We again follow Tonkin-Hill et al. [62], and use the Viterbi training
algorithm [152] in place of the Baum-Welch to estimate 𝛿 and 𝜖, and calculate the
composite likelihood over 1000 randomly selected sequences to estimate 𝜌. This
allows us to analyse large datasets (such as the DBL𝛼 dataset in Section 3.3.2) in a
practical timeframe with only a small loss in accuracy.
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3.2.2 Identifying recombinant triples and calculating multi-

ple sequence alignments

For each breakpoint in each sequence, we identify the triple of the target sequence
and the two sequences which contain the source segments before and after the break-
point as a ‘recombinant triple’, that is, the two parents and the child of a recombi-
nation. This results in a list of recombinant triples, some of which may refer to the
same recombination event. The JHMM method only provides a pairwise alignment
of each target segment to one source segment. We take these pairwise alignments
and add the corresponding segment from the remaining source sequence in the triple,
using the MAFFT algorithm [197]. For each triple, this results in a multiple align-
ment of the segments surrounding the breakpoint. See Supplementary Figure 3.23
for an overview of this process.

Note that we require a sufficient sequence length on either side of the breakpoint
in order to calculate distances accurately. Moreover, we observe in practice that
short source segments resulting from the JHMM method tend to be artifacts of the
method, rather than representing multiple consecutive recombinations. To address
this, we exclude triples for which the aligned segment on either side of the breakpoint
has length less than 10, which we found to be a suitable threshold in practice.

3.2.3 Identifying recombinant sequences

We now apply the well-known principle [96, 97, 99] that two non-recombinant se-
quences will have a similar evolutionary distance all along the sequence; that is, the
distance between the two sequences does not change before and after a recombina-
tion breakpoint in a third sequence. Conversely, the distance between a recombinant
sequence and another sequence does change at a breakpoint. Using a distance-based
method here allows us to avoid an expensive tree or network inference step and thus
scale our method to many sequences.

We calculate, for each recombinant triple {𝑎, 𝑏, 𝑐}, the evolutionary distance be-
tween each pair of segments before and after the breakpoint. We use here the
BLOSUM62 distance [198] for amino acids and Hamming (mismatch) distance for
DNA sequences (these could in principle be substituted by a large variety of ways to
calculate evolutionary distance). We denote these distances by 𝐷1 and 𝐷2 for the
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first (pre-breakpoint) and second (post-breakpoint) segment respectively. The pair
with the smallest absolute difference in distance before and after the breakpoint are
inferred to be the two non-recombinant sequences, while the third is inferred to be
recombinant. Formally, we have

recombinant = {𝑎, 𝑏, 𝑐} ∖ argmin
{𝑥,𝑦}⊂{𝑎,𝑏,𝑐}

|𝐷1(𝑥, 𝑦)−𝐷2(𝑥, 𝑦)|.

This method identifies one recombinant from each recombinant triple; note that one
recombination may generate one or more triples, but the identified recombinant from
each of these triples should be the same. We apply this to all triples identified above,
generating a list of recombinants in the entire dataset and their putative parents.

3.2.4 Calculating support values

In addition to identifying recombinant sequences, we can also measure the uncer-
tainty in our identification by using bootstrapping. For each multiple alignment of
a triple, we resample characters in the alignment (columns) within each segment,
with replacement. This provides us with a resampled alignment, and we generate
100 replicates per triple. We then run our distance-based method to identify the
recombinant for each replicate. The proportion of replicates which infer the same
recombinant as the original alignment is the support value of this detection. The
larger the support value, the more certain we are of the detection.

3.3 Results

3.3.1 Simulations

We conducted extensive simulations to evaluate the effectiveness of our method. Our
simulation protocol is as follows:

1. Simulate a tree (genealogy) under the coalescent (without recombination) us-
ing msprime [199].
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2. Evolve amino acid sequences from a common ancestor along the tree using
Pyvolve [200]. If insertions and/or deletions are required, we use INDELible

[201] instead.

3. Generate recombinant sequences from two or more randomly chosen sequences
in the dataset, with breakpoints chosen uniformly at random along the genome.
The parent sequences are removed from the dataset.

This simulation produces a dataset which can be clearly separated into recombinants
and non-recombinants. Manually performing the recombination step guarantees
that we have only recent recombinants, which our method is designed to detect.
Moreover, the non-recombinants are guaranteed to have no ancient recombination
events in their history. Note that while we do not evolve our sequences further after
recombination, we do remove the parents from the dataset, which produces a similar
effect: their nearest extant relations in the dataset are evolutionarily separated
from the recombinant sequence. In our simulations, we simulate both equal-length
sequences (no indels), and unequal-length sequences with indel events, generating
unaligned input.

There are a wide variety of parameters which could potentially affect the perfor-
mance of the method. We vary the proportion of recombinant sequences in the
dataset; the number of recombinations per recombinant; the number of sequences
in the dataset; the sequence length; the mutation rate; and the substitution model.
For simulations with insertions and deletions, we also vary indel rate and size. To
keep our simulations tractable, we only vary one parameter at a time, keeping the
remainder fixed at default values (Supplementary Tables 3.3 and 3.4). For each pa-
rameter combination, we simulate 100 datasets and run our method on each dataset
in turn.

Our results are shown in Supplementary Section 3.5.2. In summary, we find that
the method enjoys good performance, with most parameter settings offering both
sensitivity and specificity above 70% (and often much higher). For the simulations
without indels, we find that sensitivity increases with the number of recombinations,
sequence length, and mutation rate, while staying stable with respect to the other
parameters. Specificity decreases (usually slightly) as the proportion of recombinant
sequences, number of recombinations, sequence length, and mutation rate increase.

An important feature of our method is its ability to accept unaligned sequences as
input. When we include indels in the generating process, we can see (Figure 3.2)

47



Chapter 3

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.1 0.2 0.3 0.4 0.5

Indel rate (indels/substitution)

S
en

si
tiv

ity

(a)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.1 0.2 0.3 0.4 0.5

Indel rate (indels/substitution)

S
pe

ci
fic

ity

(b)

Figure 3.2: Mean sensitivity and specificity (with 95% confidence in-
tervals) for varying indel rate.

that both sensitivity and specificity remain relatively unaffected, with a moderate
decline in specificity as indel rate increases. This indicates that our method is robust
to indels even when the indel rate is large.

We also compared our method with a number of popular recombinant detection
methods, after aligning the simulated sequences. We note that these methods only
accept aligned sequences, making a direct comparison potentially biased one way or
the other (depending on whether the sequences have indels or not). Despite this, we
can see (Figure 3.3) that our method enjoys the highest sensitivity overall of finding
recombinant sequences when we matched the specificity of other methods to that of
our method, whether or not indels are included in the sequences. For more details,
see Supplementary Section 3.5.2.2.

Finally, we studied the distributions of the support values for true and false detec-
tions, and the accuracy of the JHMM methods in our simulations (Supplementary
Sections 3.5.2.4 and 3.5.2.5).

3.3.2 Analysis of DBL𝛼 sequences from a cross-sectional study

in Ghana

Population genetic studies of var genes have focused on sequencing the DBL𝛼 do-
main, since nearly all var genes (except var2CSA [49–51]) encode a single DBL𝛼
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Figure 3.3: Distribution of sensitivity (for matched specificity) for dif-
ferent recombinant detection methods on simulated datasets with (left)
and without (right) indel events.

domain. We applied our method to detect recombinants and breakpoints in a dataset
of DBL𝛼 sequences collected from individuals with microscopically confirmed P. fal-
ciparum infections (isolates) living in the Bongo District, in the Upper East region
of northern Ghana (GenBank BioProject Number: PRJNA396962) [70, 85]. This
dataset consists of 35,591 previously published DBL𝛼 sequences collected from 161
isolates, which were clustered into 17,335 representative DBL𝛼 ‘types’ of average
length 125aa (s.d. 8.4aa). Of these, we detected 14,801 (85.4%) to be recombinant.
See Supplementary Section 3.5.3.1 for more details.

3.3.2.1 DBL𝛼 sequences from the same ups group recombine more fre-

quently

The upstream promoter sequences of each var gene can be classified into three main
ups groups, upsA, upsB, and upsC [46]. Earlier studies on a much smaller dataset
[61], based on sequence similarity, proposed that var gene recombination preferen-
tially occurs within the same ups group. Using our method, which to our knowledge
is the first systematic attempt to detect recombinants in var genes in natural par-
asite populations, we found considerable evidence supporting this hypothesis. Our
results are summarised in Table 3.1.
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Table 3.1: Proportions of recombinations from the same ups groups and
DBL𝛼 subclasses. Expected proportions are given in brackets. All 𝑝-values are
highly significant (< 2.2× 10−16) except for the entry marked in red (𝑝 = 0.2734).

Parent-child Parents Family (parents-child)

UpsA vs. upsB/C 99.7% (92.5%) 98.9% (85.0%) 98.5% (85.0%)
UpsA, B and C 85.3% (75.4%) 65.5% (50.9%) 51.1% (50.9%)
DBL𝛼 58.8% (53.9%) 31.0% (7.9%) 20.6% (7.9%)

We calculated the proportion of recombination triples which have one parent and
the child, both parents, and both parents and the child belonging to the same ups
group (‘Parent-child’, ‘Parents’, and ‘Family’ in Table 3.1). With one exception, we
found that the parents and/or the child of a recombination were significantly more
likely (𝑝 < 2.2 × 10−16 from 𝜒2 tests) to belong to the same ups group, compared
to a (conservative) null model where the parents have independent groups, but the
child shares the group of one of its parents. (Under a more liberal model where
the child group is also independent, all 𝑝-values are highly significant.) Our results
strongly reinforce the conclusions of earlier studies, and provide more precision with
the division into three ups groups.

We also considered the proportions of identified recombinants in each ups group.
We found that there was a significant difference in the proportions of recombinants
in the three groups (𝑝 = 2.193 × 10−7 from a 𝜒2 test), with upsA having the least
proportion of recombinants, and upsC the most (82.3%, 84.9%, and 87.6% from A,
B, and C respectively).

3.3.2.2 Proportions of recombination differ among domain subclasses

DBL𝛼 sequences can also be classified according to sequence similarity into 33 sub-
classes (DBL𝛼0.1–24, DBL𝛼1.1–8, DBL𝛼2) [46]. These subclasses are strongly as-
sociated with ups groups; however, they also provide greater resolution in dividing
the sequences. We thus repeated our earlier analyses with regards to the subclasses.
As with ups group, we found a significant (all 𝑝 < 2.2× 10−16) increase in recombi-
nations with one parent and the child, both parents, and both parents and the child
from the same domain subclass (Table 3.1).

We next considered the proportions of identified recombinants in each subclass (Fig-
ure 3.4). We identified seven subclasses (DBL𝛼0.1, 5 and 11 were too high, while
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Figure 3.4: Proportions (and 95% confidence intervals) of recombinants
for each DBL𝛼 subclass. Subclasses which are significantly different from the
overall average (under a correction for multiple testing) are highlighted in red. The
horizontal dashed line displays the overall proportion of recombinant sequences in
the entire dataset.

DBL𝛼0.3, 8, 9 and 23 were too low) which were significantly different from the
average under a Bonferroni correction for multiple testing. Of particular note is
the DBL𝛼0.1 subclass, which has been noted to involve more recombinations than
other subclasses [42]. We suggest that these subclasses should be explored further
to determine if there are some biological factors that may explain these results.

We also investigated the proportion of recombinants among individual isolates, and
among the two broad catchment areas in the Bongo District (Soe and Vea/Gowrie)
that the isolates were collected from. We did not detect any significant differences
here (see Supplementary Section 3.5.3.2).

3.3.2.3 Non-recombinant DBL𝛼 types are more conserved than recom-

binant types

It is well known [74, 202] that some DBL𝛼 types are highly conserved (appear
in many different isolates) in a population (or even globally, 62). On the other
hand, many other types only appear rarely, or even once. We hypothesise that
non-recombinant types are more “stable” than recombinants, and thus may be more
highly conserved.
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Table 3.2: Proportions of frequent (larger than the threshold) recom-
binant and non-recombinant DBL𝛼 types.

Threshold 5 10 15 20

Recombinants 17.5% 4.5% 2.1% 1.3%
Non-recombinants 21.0% 6.0% 2.3% 1.6%
𝑃 -value (𝜒2 test) 0.006 0.047 0.666 0.634

We investigated this hypothesis via the recombinants identified by our method.
Firstly, we compared the observed frequencies in the dataset of the recombinants to
the non-recombinants; we found that non-recombinants occurred significantly more
often (average 4.2 vs. 3.7, 𝑝 = 0.021 from a Wilcoxon rank sum test).

We also considered if there is a difference in the proportions of frequent DBL𝛼
types in recombinants and non-recombinants. As the frequencies of types are highly
right-skewed (see Supplementary Figure 3.26), we thresholded the frequencies at
various levels to determine if there were particular frequencies where an effect could
be noticed. The results are in Table 3.2. We found that for a threshold frequency
of 5, there were significantly fewer frequent recombinants than non-recombinants;
however, this effect becomes less noticeable for larger thresholds. This suggests
that there is a high proportion of recombinants which appear very few times in the
dataset; these are potentially relatively recent recombinants, which may have not
been established in the population.

3.3.2.4 Breakpoint positions are associated with homology blocks

It is known that a number of semi-conserved homology blocks (HBs) occur frequently
in var genes [46]. These HBs recombine at exceedingly high rates [53, 56], and are
known to be useful in predicting disease severity [82]. We thus investigated the
patterns of recombination in DBL𝛼 types in relation to these homology blocks.

The positions of recombination breakpoints, as found by the JHMM method, are
shown in Figure 3.5. Of particular note is:

• The recombination rate is not constant throughout the sequence, but displays
three distinct peaks spaced in roughly equal intervals. These peaks clearly
correspond to the three most frequent homology blocks, HB5, 14, and 36, with
the height of the peak also corresponding to the frequency of the HB.
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Figure 3.5: Positions of recombination breakpoints. (Top) The histogram
of relative breakpoint positions of recombinations. (Bottom) The position of the
most common homology blocks, with circle size proportional to frequency. The
three most frequent homology blocks (HB5, 14, and 36) are highlighted in blue.

• The frequency of breakpoints drops sharply towards either end of the sequence.
This is an artifact of the method and does not imply that the recombination
rate is lower there; we cannot recognise a recombination which is close to one
end of the sequence.

This reinforces the biological theory that recombination occurs within short identical
segments [203].
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3.4 Discussion

In this paper, we have developed a statistical method to detect recombinant se-
quences from a large set of genetic sequences without requiring a multiple alignment
or a reference panel. We can also assess the reliability of the inferred recombinants
with a bootstrapping-based tool. Simulations show that our method performs very
well even when there is a high recombination rate, long sequences, or a large dataset.
Crucially, it maintains its accuracy in the presence of insertions and deletions, where
methods that require an alignment would normally fail. In a study of DBL𝛼 do-
mains of var genes, comparisons between recombinant and non-recombinant DBL𝛼
types reveal a series of biologically meaningful results; we find evidence for the hy-
pothesis that recombination is more frequent within ups groups [61], but also find
that it is more frequent within domain subclasses. We also find novel results that
recombinants differ from non-recombinants both in their representation in domain
subclasses, and in their levels of conservation.

While our method is not strictly an alignment-free tool, it carries several advantages
over methods based on a full multiple sequence alignment. Our method mostly aligns
segments which are closely related to each other, thus increasing the reliability of the
alignments; as datasets increase in size and variability, it will become more difficult
to construct a reliable full alignment for all sequences. Moreover, our method only
attempts to align three sequences at once, again saving time and increasing reliabil-
ity. By identifying recombination triples directly from the JHMM, our method also
avoids having to examine all possible triples of sequences one by one.

As noted above, our method is designed to only detect recent recombinants, which
have not yet diverged in the dataset. For example, if a more ancient recombina-
tion produces a lineage that diverges into two sequences, they will be preferentially
matched to each other by the JHMM, and it is possible that no recombination will
be detected. The initial clustering of DBL𝛼 tags into types at 96% similarity (a
standard part of the preprocessing pipeline [204]) may help in this regard, as the
lineages must diverge beyond this threshold to be distinguished. The use of different
clustering thresholds may affect the results, potentially unlocking access to signals
of older recombinations.

Note that it is uncertain how long a recombinant will remain recent for, and this may
well depend on sampling coverage and sample size. For example, although recombi-
nation events have been reported on timescales of several years [42], a recombinant
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may continue to be ‘recent’ for far longer than that. The Ghana dataset studied in
this paper is the first of a longitudinal dataset collected over several seasons, which
may give insight into the frequency and patterns of recombination on epidemiological
timescales; this is the subject of current work.

Furthermore, there is an implicit assumption that recombinations do not ‘interact’
with each other, i.e., that they are sufficiently far apart either in the evolutionary
network or in the genome that we can decompose the dataset into recombinant
triples and assess those independently. This is a strong (and perhaps unrealistic,
in the context of genes which have a high recombination rate) assumption which
we make in order to obtain a tractable algorithm. As seen from our results, we
do appear to obtain good accuracy with our detections even in cases where this
assumption might not hold; assessing the exact impact of this assumption on our
results is also the subject of future work.

Although our methods are motivated primarily by the highly recombinant var genes,
our approach is not restricted to these genes, but could be used for any genes which
are recombinant but lack a reliable alignment or reference panel. The scalability
of our method means that it will be applicable even to large datasets, thus holding
great promise for broader applications.
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3.5 Supplementary materials

3.5.1 Methods

3.5.1.1 Identifiability: a phylogenetic perspective

An important component in our method is the ability to identify which member of a
triple is the true recombinant. It is important to note that the JHMM method does
not identify the recombinant, but instead finds the (segments of) extant sequences
which are the most closely related to the target sequence.

This can be illuminated by considering an explicit phylogenetic network [205] with
three aligned sequences and one recombination as an example, as shown in Fig-
ure 3.6. Here, we can translate a phylogenetic network to the corresponding mosaic
representations, assuming the JHMM method estimates the distances between se-
quences perfectly. It can be seen that the same mosaic structure can result from
networks with different recombinants.

In fact, as discussed at length by Pardi and Scornavacca [206], this is an unavoid-
able problem with the identifiability of phylogenetic networks; networks cannot be
distinguished solely by the topologies of displayed trees, which the output of the
JHMM method is dependent on. The solution, as given in that paper, is to use
(inferred) branch lengths to distinguish between the networks, and thereby identify
the recombinant.

When the phylogenetic network only consists of three sequences and one recombi-
nation (as in Figure 3.6), it is easy to translate the network to the JHMM output,
and thus use it to find the recombinant. However, the problem rapidly becomes
much more complicated with more sequences and/or recombinations, and indeed for
ancestral recombinations (predating a divergence) it’s not even clear how to define
an extant ‘true recombinant’. To avoid this problem, we only identify triples of se-
quences, and assume that only one recombination occurs in the recent evolutionary
history of each triple. For large datasets, we are essentially assuming that recombi-
nations are ‘sufficiently far apart’ either in the network or in the genome that they
do not interact with each other.

From a phylogenetic perspective, we can see that when this assumption holds, identi-
fying only triples breaks down a complicated network into repeated cases of a three
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Figure 3.6: Identifiability of networks from the JHMM output. Here,
two networks with different recombinants produce the same profile tree topologies,
and thus the same JHMM output. The JHMM output is depicted below the
profile trees, with arrows from each target segment pointing to the matching source
segment (so, for example, if 𝑏 is the target sequence, it is matched to source
sequence 𝑎 in segment 1 and 𝑐 in segment 2 in both cases). Both cases produce
identical JHMM output: in particular, sequence 𝑏 is matched to two different
source sequences even though it is not necessarily the recombinant.

sequence–one recombination network, for which we can identify the recombinant.
See Figure 3.7 for an example of this.
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Figure 3.7: Decomposing a network into triples. At the first breakpoint,
the triple {𝑏, 𝑐, 𝑑} is identified from target sequence 𝑏, while at the second break-
point, {𝑎, 𝑏, 𝑐} is identified from sequence 𝑏, and {𝑏, 𝑐, 𝑑} from sequences 𝑐 and
𝑑. In all cases, distance-based recombinant identification will obtain the correct
recombinant (𝑏 at both breakpoints).

3.5.2 Simulation results

3.5.2.1 Effect of parameters

The parameters that we vary in the simulations, and their ranges, are shown in
Tables 3.3 and 3.4. We vary one parameter at a time, holding the remainder at
default values (shown in bold in the tables). We now consider the effect of each
parameter in turn.

Table 3.3: General simulation parameters (no indels). We vary each
parameter in turn while holding the others fixed at the default values (in bold).

Parameter Values
1○ Proportion of recombinant se-
quences (%)

10, 20, 30, 40, 50, 60, 70, 80, 90

2○ Average number of recombina-
tions per recombinant sequence

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0

3○ Dataset size (sequences) 100, 150, 200, 250, 300, 350, 400, 450, 500
4○ Sequence length (AA) 100, 150, 200, 250, 300, 350, 400, 450, 500
5○ Mutation rate (substitution-
s/site/coalescent unit)

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

6○ Amino acid evolution model AB [207], DAYHOFF [208], JTT [209], LG [210],
MTMAM [211], WAG [212]
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Table 3.4: Indel simulation parameters (default values in bold). Inser-
tions and deletions are simulated at the same rate, with lengths according to a
negative binomial distribution with variance 10.

Parameter Values
7○ Indel rate (expected number of indels/substitution) 0.1, 0.2, 0.3, 0.4, 0.5
8○ Mean indel size (AA) 3.7, 5.2, 6.0, 6.6, 7.0

Recombinant proportion As the proportion of recombinants increases, sensi-
tivity is stable at around 80%, while specificity decreases (Figure 3.8). Here, more
recombinant sequences result (correctly) in a higher number of recombinations de-
tected. It appears that the proportion of true recombinants extracted from the re-
combinant triples remains largely the same (constant sensitivity); however, there are
proportionally more false detections as the number of non-recombinants decreases,
resulting in a lower specificity.
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Figure 3.8: Mean sensitivity and specificity (with 95% confidence in-
tervals) for varying proportions of recombinant sequences.

Number of recombinations per recombinant As shown in Figure 3.9, the
datasets where there are more recombinations per recombinant sequence appear
to have a higher sensitivity, and slightly lower specificity. As with recombinant
proportion, an increase in the number of recombinations results (correctly) in more
inferred recombinations; unlike that case, the number of true recombinants remains
the same here. It appears that the ‘extra’ detections are mostly correct, which results
in a greater proportion of true positives (sensitivity increases) and a relatively stable
specificity.
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Figure 3.9: Mean sensitivity and specificity (with 95% confidence inter-
vals) for varying numbers of recombinations per recombinant sequence.

We also conducted a further analysis by matching the distribution of the number of
recombinations per recombinant to the Ghana dataset (see Supplementary Section
3.5.3.4 and Figure 3.27 for more details). Our results indicate that, despite a low
specificity (40.0%), a high sensitivity (89.0%) still demonstrates the applicability of
our algorithm to real data.

Dataset size Dataset size does not appear to have a drastic effect on the sensitivity
of the method, while specificity increases slightly (see Figure 3.10). It is to be
expected that performance increases slightly as information accumulates across a
larger dataset, but it is unclear why this is only expressed in the specificity here.

Sequence length Datasets with longer sequence length have much higher sensi-
tivity, and slightly lower specificity (Figure 3.11). It seems (Figure 3.12) that as
sequence length increases, the number of recombinations detected also increases,
even though the true number of recombinations remains the same. This increase
in detections, combined with a fixed percentage of recombinants, results in a effect
similar to that seen for the number of recombinations per recombinant: an increase
in sensitivity and a slightly decreasing specificity.

Mutation rate As the mutation rate increases, the sensitivity of the method
rapidly increases before levelling out (Figure 3.13). This makes sense, as if the
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Figure 3.10: Mean sensitivity and specificity (with 95% confidence in-
tervals) for varying dataset size.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

100 150 200 250 300 350 400 450 500

Sequence length (AA)

S
en

si
tiv

ity

(a)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

100 150 200 250 300 350 400 450 500

Sequence length (AA)

S
pe

ci
fic

ity

(b)

Figure 3.11: Mean sensitivity and specificity (with 95% confidence in-
tervals) for varying sequence length.

number of substitutions is too low, the sequences are difficult to distinguish from
each other, which makes the results from the JHMM unreliable. Conversely, as the
number of substitutions grows, it also becomes more difficult to identify sequences
which are closely related to each other, resulting in a decrease in specificity.

Evolution model The method appears to be robust to the stochastic model of
amino acid evolution (Figure 3.14).
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Figure 3.12: The number of recombinant triples detected by our al-
gorithm for varying sequence length. The reference line indicates the true
number of recombinant triples in the dataset.
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Figure 3.13: Mean sensitivity and specificity (with 95% confidence in-
tervals) for varying mutation rate.

Indel size When indels are included in the generating process, accuracy is not
affected by the size of the indels (Figure 3.15).

Running time As expected, the only parameters which affect the running time
of the algorithm are dataset size and sequence length. In Figure 3.16, we show
the running time of the simulations for each replicate (without parallelisation; see
below). The running time appears to grow quadratically with respect to both dataset
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Figure 3.14: Mean sensitivity/specificity (with 95% confidence inter-
vals) for each model of amino acid evolution.
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Figure 3.15: Mean sensitivity and specificity (with 95% confidence in-
tervals) for varying indel size.

size and sequence length (the slopes of regressions on the log-log data are 2.09
and 2.28 respectively). This compares favourably to many recombinant detection
methods which are based on examining all triples of sequences, and are thus 𝑂(𝑛3)

in the dataset size.

While the total running time becomes quite large at even moderate dataset sizes, the
algorithm is easily parallelisable in a relatively naive way. The main computational
task of the algorithm is in the determination of Viterbi paths for every sequence in
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Figure 3.16: Average running time per replicate (and 95% CIs) for
varying dataset size (left) and sequence length (right).

the dataset with respect to all other sequences. This is used for both training the
JHMM, and calculating its final output. By computing the Viterbi paths for each
sequence in parallel, we can achieve massive savings in real time; for example, the
var gene dataset can be analysed in a tractable amount of time even with many
more sequences.

On the other hand, this parallelisation does not produce any benefits as the length
of the sequences grow longer. Thus our algorithm is more suited to the analyses of
massive datasets of relatively short sequences.

3.5.2.2 Comparison with other methods

We compared our method with the recombinant detection methods 3SEQ [99, 100],
Chimaera [97], GeneConv [213], MaxChi [96], RDP [109], and Siscan [107]. All but
the first method are implemented in RDP5 Beta 6 [110].

As these methods mostly accept aligned DNA sequences as input, we simulated
DNA sequences with length 200nt under the F81 substitution model [214]. Other
parameters followed the default simulation settings in Tables 3.3 and 3.4. We simu-
lated both with and without indel events, then aligned the resulting sequences with
MUSCLE v3.8.31 [215] for methods requiring an alignment.
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As our method does not utilise p-values, in order to ensure a fair comparison we
thresholded the p-values output by other methods so that the specificity (false de-
tection rate) of all the methods are the same. We then compared the sensitivities of
each method.

In addition, we also compared both the sensitivity and specificity of all the methods
for their default settings (Figure 3.17). With indels simulated, our method is clearly
superior in both sensitivity and specificity, as expected; with no indels simulated,
methods based on aligned sequences perform better than before, but our method is
still superior.
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Figure 3.17: Sensitivity and specificity (and 95% CIs) under default
parameters with and without indel events.

3.5.2.3 Ancient recombinations

Our simulations are designed to only contain ‘recent’ recombinations, that is recom-
binations which only descend to one sequence in the dataset. This allows us to have
complete control over the proportion and make-up of recombinants, and to unam-
biguously distinguish between recombinants and non-recombinants. On the other
hand, it is possible that our method may be hindered by the presence of ancient
recombinations which descend to a number of sequences in the dataset.

To test this, we used the msprime software to simulate sequences under the full
coalescent with recombination; this allows recombinations to occur throughout the
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evolutionary history of the sequences. We use default values for the simulation pa-
rameters (apart from the proportion of recombinant sequences and average number
of recombinations per recombinant), and vary the recombination rate, producing
varying proportions of recombinant sequences in the dataset. We then determined
each sequence as a recent recombinant if and only if it is the only extant descendant
of an ancestral segment produced by a recombination (i.e., a segment surrounding
the recombination breakpoint).
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Figure 3.18: Sensitivity and specificity (and 95% CIs) for recent re-
combinations only (solid lines) and recombinations allowed throughout
(dashed lines), for varying recombination rate.

We observe that our method still retains a lot of power to detect recent recombinants
under this scenario, with slightly higher sensitivity and slightly lower specificity
compared to our previous simulations. Indeed, the sensitivity improves with the
recombination rate; it appears, rather pleasingly, that our method has some ability
to even detect the signal of older recombinations.

3.5.2.4 Support values

In addition to detecting recombinants, we also calculate support values for each
detection using bootstrapping. Here, we verify that the calculated values are indeed
effective for this purpose. For our simulations, we calculate the support values for
each of the correct detections, as well as each of the false positives. The distributions
of the support values for the default parameters are shown in Figure 3.19. Here, we
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can see that there is a clear separation between the distributions of support values
for the true and false positives; while the values for both are relatively high, the
support values for true detections are overall much higher. Similar patterns are seen
among all the remaining parameter settings (Figures 3.28–3.35).

False recombinants

True recombinants

0.2 0.4 0.6 0.8 1.0

Support value

Figure 3.19: Distributions of support values under default parameters
without indel events.

This suggests that we can use a threshold on the support value to refine our detec-
tions. This is reasonable if we wish to reduce false positives; however, in practice
we found that applying a threshold also reduced true positives (as expected) to an
extent which lowered the overall accuracy of the method, so we have elected not
to apply it here. Instead, we suggest that the support value be used to assess the
confidence which should be placed in individual recombinant detections of interest.

3.5.2.5 Accuracy of the JHMM method

The JHMM method of Zilversmit et al. [54] forms a key part of our method to detect
recombinants. Until now, there has not been a systematic study of the accuracy of
this method. Two key outputs of this method are the locations of the inferred
recombination breakpoints, and the estimated recombination parameter 𝜌. Here, we
study the accuracy of these inferences for our simulated datasets.

Recombination breakpoints For each recombination, we calculate the distance
between the true and inferred breakpoints. For ease of comparison, we restrict this
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analysis to the case where each recombinant sequence has exactly two parents (one
recombination), which avoids the problems of matching breakpoints in the same
sequence to each other.

We find in general (see Figure 3.20) that the breakpoints are very accurately in-
ferred, with 38.4% of all breakpoints inferred exactly, and 75.0% being at most 5AA
from the true value. There is also a slight but noticeable positive bias, where the
inferred breakpoints tend to be slightly to the right of the true breakpoints (Figure
3.21). This can be best explained by noting that the JHMM method infers the best
(Viterbi) path from left to right, and recombinations are considered relatively un-
likely; hence a recombination will tend to be inferred slightly later than it actually
is, particularly if both parents’ sequences are identical around the breakpoint.
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Figure 3.20: Breakpoint inference error of the JHMM method under
default simulation parameters.

Finally, we note that the breakpoint accuracy appears to be very robust to indel
events; this is expected, since the method explicitly accounts for these events.

Recombination rate The parameter 𝜌, the probability of switching between
source sequences after any character, is directly related to the recombination rate
in the dataset (although it does not provide a rate in terms of time dimension).
As such, an accurate estimate of 𝜌 is valuable for molecular phylogeneticists. We
observe in our simulated datasets (Figures 3.36-3.39) that the inferred values of 𝜌
provide an accurate estimate of the recombinaton rate.
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Figure 3.21: Breakpoint inference of the JHMM method under default
simulation parameters. Most points cluster around the line 𝑦 = 𝑥, indicating
a high accuracy of breakpoint inference. However, there is a slight positive bias in
the identified breakpoint location, particularly for breakpoints which occur later
in the sequence.

On the other hand, the inferred 𝜌 can also be affected by mutation rate (Figure 3.22)
and (to a lesser extent) indel events (Figures 3.40-3.41); here, an increasing rate of
indel events leads to some of them being mistaken for recombination, distorting the
inference of the recombination rate. This indicates that the use of the JHMM to
infer the true recombination rate has the potential to be inaccurate.

3.5.3 Analysis of DBL𝛼 sequences from a cross-sectional study

in Ghana

3.5.3.1 Data handling

Details on the study population, data collection procedures, and epidemiology have
been published elsewhere [73, 83, 84].

Preprocessing We follow the standard pipeline used in [62, 74]. The DNA se-
quences were first translated into protein sequences, and removed if the resulting
sequence contained a stop codon. The protein sequences were then clustered with
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Figure 3.22: Estimated 𝜌 (and 95% CI) with varying mutation rate (but
constant number of recombinations).

the Usearch software (v8.1.1861) [216] with a 96% sequence similarity cutoff [204].
The cluster centroids were then taken as a representative sequence for the clusters,
which are known as DBL𝛼 types. This results in a dataset of 17,335 types, each of
which may appear in several isolates.

Identifying recombinants We applied our method to this dataset to detect re-
combinant types. We detected 14,801 (85.4%) of the DBL𝛼 types to be recombinant.

The analysis was run on a high performance cluster at the University of Melbourne
(72 Intel(R) Xeon(R) Gold 6254 CPU cores @ 3.10GHz, 768GB RAM). The com-
putation of Viterbi paths for each sequence, which is necessary for both estimating
parameters and identifying recombinants, can be performed in parallel; we computed
Viterbi paths for 30 sequences (against all other sequences in the dataset) at a time
on one core (578 subsets total). The total time taken was 943 minutes; this is broken
down in Table 3.5. By far the largest bottleneck is the computation of the mosaic
representations of the sequences (both parameter estimation and computation of the
Viterbi paths); once this was completed, the remaining steps are very efficient even
for a dataset of this size.
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Table 3.5: Time and memory consumption of the algorithm on the
Ghana dataset.

JHMM parameter estimation Viterbi paths Recombinant identification
Time (minutes) 644.8 294.9 2.7
Memory (GB) 21.3 21.2 0.1

3.5.3.2 Recombinant proportions across isolates and catchment areas

We investigated the proportion of recombinants among individual isolates to de-
termine if there were certain isolates with an elevated or reduced proportion of
recombinants. Excluding isolates with less than 20 DBL𝛼 types [62, 74] resulted in
a total of 158 isolates with a mean of 217.1 DBL𝛼 types per isolate (range 33–833).
We tested if the average proportion of DBL𝛼 types in each isolate was equal to the
overall dataset proportion with a 𝑡-test with a Bonferroni correction for multiple
testing. There were no isolates which had a significantly different proportion of
recombinants under this test (see Figure 3.25).

In addition, 133 isolates (82.6%) were from two catchment areas: Soe and Vea/-
Gowrie. A 𝜒2 test showed no significant difference between the proportion of recom-
binants from these two areas (𝑝 = 0.992).

3.5.3.3 Detection of HBs in recombinant and non-recombinant DBL𝛼

types

The location of homology blocks (HBs) in each sequence was obtained using the
VarDom server [46] with the default cut-off of 9.97 as a threshold to define a match.
For each HB, we averaged the leftmost and rightmost relative positions of each
occurrence in a sequence to obtain the overall location of the HB.

We identified in total 41 different HBs in the database (mean 5.5, range 1–10 HBs
per sequence). HBs are numbered based on the frequency of occurrence [46], with
HB1 the most frequent. We found that the frequency of HBs in our dataset also
decreased with the numbering, with the exception of HB2 and HB3; these HBs are
frequent, but lie partially outside the DBL𝛼 tag boundaries, making it difficult to
positively identify them in the dataset. The most frequent HBs in our dataset were
HB5, HB14, and HB36.
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To compare sequences directly based on HBs, we used the pairwise HB similarity
[82]. This is defined as the number of HBs shared between any two sequences,
divided by the average number of HBs within a sequence.

We discovered that the number of HBs in recombinant sequences were significantly
higher than in non-recombinant sequences (5.5 vs. 5.3, 𝑝 < 2.2×10−16 from Wilcoxon
rank sum test). Furthermore, the proportion of sequences containing “important”
HBs (5, 14, and 36) were also significantly different between the two groups (83.9%
vs. 78.5%, 𝑝 = 1.859 × 10−11 from 𝜒2 test), indicating that recombinants tend to
have more conserved building blocks. Finally, we found that recombinant sequences
had higher pairwise HB similarities with each other than non-recombinants (0.629
vs. 0.618, 𝑝 < 2.2× 10−16 from Wilcoxon rank sum test).

3.5.3.4 Matching recombination numbers to real data

We performed an additional simulation to match the distribution of the number of
recombinations per recombinant sequence to the Ghana data. To do this, we applied
the JHMM method to the Ghana data, and extracted the number of source segments
matched to each target sequence (Figure 3.27). From this Figure, we observe that
it is extremely rare to have a sequence match to 8 or more source segments (i.e., 7
recombinations), so we do not allow this to happen in our simulations.

The primary difficulty here is that the JHMM method appears to slightly overesti-
mate the number of recombinations, which means that if we simulate recombinations
in exactly the same proportion as found from the Ghana data, the JHMM method
produces a recombination frequency which is slightly too high. To accommodate
this, we tested five sets of probabilities in simulation, and selected the probabilities
of (0.02, 0.30, 0.21, 0.23, 0.14, 0.11, 0.00) for 1–7 source segments (0–6 recombina-
tions) for each sequence. This produced a distribution of numbers of recombinations
which was similar to the Ghana data.
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3.5.4 Figures and tables
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Figure 3.23: An overview of calculating a multiple sequence alignment
with MAFFT. (a): A segmental pairwise alignment generated by the JHMM
method. Segments from sequence 𝑎 are aligned to segments from sequences 𝑏 and
𝑐 respectively. (b): Using MAFFT, we include the corresponding segment from
the third sequence into the pairwise alignment on either side of the breakpoint.
(c): By trimming the alignments, we generate a multiple alignment.
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Figure 3.24: Distribution of source segment length in mosaic represen-
tations of Ghana data. There is a peak of source segments which are less than
5AA, which appear to be the artifacts of the JHMM method.
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Figure 3.25: Proportions (and 95% confidence intervals) of recombi-
nants for each isolate. The horizontal dashed line displays the overall propor-
tion of recombinant sequences in the entire dataset. Each vertical bar represents
an isolate, and we remove isolate names from x-axis for brevity.
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Figure 3.26: Frequency of DBL𝛼 types in the isolates of the Ghana
dataset.
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Figure 3.27: Distribution of source segment count from the JHMM
output in the Ghana data.
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Figure 3.28: Distribution of support values for varying proportions of
recombinant sequences. Red points represent the median of support values
(same hereinafter).
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Figure 3.29: Distribution of support values for varying numbers of re-
combinations per recombinant sequence.
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Figure 3.30: Distribution of support values for varying dataset size.
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Figure 3.31: Distribution of support values for varying sequence length.
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Figure 3.32: Distribution of support values for varying mutation rate.
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Figure 3.33: Distribution of support values for different models of amino
acid evolution.
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Figure 3.34: Distributions of support values for varying indel rate.
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Figure 3.35: Distributions of support values for varying indel size.
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Figure 3.36: Estimated 𝜌 (and 95% CI) for varying proportions of re-
combinant sequences. Some CIs are too short to be visible (similarly for Fig-
ures 3.37–3.39). 𝜌 appears to grow linearly with the proportion of recombinant
sequences, as expected.
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Figure 3.37: Estimated 𝜌 (and 95% CI) for varying number of recom-
binations per recombinant sequence. 𝜌 appears to grow linearly with the
number of recombinants per sequence, as expected.
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Figure 3.38: Estimated 𝜌 (and 95% CI) for varying dataset size. 𝜌
decreases slightly with increasing dataset size, although the recombination rate
remains constant.
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Figure 3.39: Estimated 𝜌 (and 95% CI) for varying sequence length. 𝜌
decreases in inverse proportion to the sequence length, as expected.

89



Chapter 3

0.000

0.002

0.004

0.006

0.008

0.0 0.1 0.2 0.3 0.4 0.5

Indel rate (indels/substitution)

ρ̂

Figure 3.40: Estimated 𝜌 (and 95% CI) for varying indel rate. There
is a moderate increase in 𝜌 as indel rate increases. This is unsurprising, as some
of indel events are mistaken for recombinations, distorting the inference of the
recombination rate.
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Figure 3.41: Estimated 𝜌 (and 95% CI) for varying indel size. Indel size
(but constant indel rate) does not appear to have a drastic effect on the estimated
𝜌.
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An improved JHMM for

recombination detection

4.1 Introduction

Plasmodium falciparum is the deadliest parasite species, attributed to over 90%
of the malaria death toll in the world [217]. The protein PfEMP1 (Plasmodium
falciparum erythrocyte membrane protein 1) is expressed at the surface of infected
red blood cells. It acts as both an antigen and adhesion protein, playing a key
role in the high virulence and immune evasion of P. falciparum [40, 218, 219]. The
PfEMP1 is encoded by the highly diverse var gene family. One of the primary
mechanisms for maintaining var diversity is recombination. Therefore, identifying
the recombination of var genes has been of major interest to biologists. Due to the
complex composition of full-length var genes, a lot of studies [62, 69–75] have focused
on the immunogenic DBL𝛼 domain of var genes. However, the DBL𝛼 domain itself
is still highly variable. As a result, the lack of a reliable alignment precludes the use
of most standard methods for recombination detection.

The jumping hidden Markov model (JHMM) proposed by Zilversmit et al. [54] is the
first systematic model to detect recombination of var gene DBL𝛼 domains. It maps
each sequence to its closest sequences from the source database, and the resulting
mosaic representations enable the identification of recombination events.

In terms of the ability to identify recombinants, we propose an algorithm in the last
chapter to detect recombinants if all input sequences are collected simultaneously.
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We show that this algorithm requires additional steps after applying the JHMM. A
notable advantage of applying the JHMM to time series data is that it allows us to
determine the recombinants directly from the JHMM output. We need only desig-
nate the old sequences as sources and more recent sequences as targets. This time
direction allows us to impute the recombination’s parents and child. Furthermore,
although it is possible that both old and recent sequences could be collected simul-
taneously, we think the possibility is rather low for frequently recombining DBL𝛼
tags. Specifically, on the order of 104 to 108 new mosaic var genes can be generated
through recombination every two days in a single infected people [42].

Despite this, there are two major limitations of the JHMM for modelling DBL𝛼
recombination. Firstly, the JHMM allows recombination between any two points
in a pair of sequences. Through our analysis of DBL𝛼 recombination patterns at
Section A.2.2.4, recombination happens at the roughly same normalized locations in
a pair of sequences. Unfortunately, the JHMM designs the recombination to occur
between any two positions, and it gives equal probability to rare events as to frequent
events. Thus the JHMM is likely to be less accurate than giving lower probability
to rare events. Moreover, its implementation is computationally expensive when
applying to the large dataset. We show the time and memory cost (Table 3.5) when
applying it to over 17,000 DBL𝛼 tags. The DBL𝛼 tag is a short segment (100-500
base pairs) of DBL𝛼 domain. This application was done with the aid of cluster and
parallelization techniques. In reality, there are far more sequences at each time point
in a longitudinal dataset. This requires much more resources, and they are beyond
modern techniques’ general capacity. Consequently, detecting DBL𝛼 recombination
from the large dataset is impractical.

This chapter introduces an improved JHMM that addresses the above two issues.
We constrain recombination to only act between nearby positions. We also propose
a sampling scheme for making the parameter estimation tractable. By doing so,
our model allows recombination to occur at homologous location between sequences
and is more efficient than the JHMM. We demonstrate this model’s accuracy and
efficiency through simulations. We also apply our model to the large longitudinal
dataset of DBL𝛼 tags introduced in Section 1.2. Our results reaffirm the discover-
ies in the previous chapter using the pilot dataset, we also find the recombination
patterns maintain with time.
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4.2 Structure of the improved JHMM

The JHMM allows recombination between any two positions in a pair of sequences.
This is done by switching the source sequences in the hidden states. That is to
say, the JHMM permits the ‘jump’ between any two characters in a pair of source
sequences representing recombination. However, we find that the jump distance in
our dataset is usually very short (Section A.2.2.4), so we add constraints on the jump
destinations. Specifically, we restrict the jump destination to a narrow interval. See
the top two panels of Figure 4.1 as an illustration. By doing so, there are two main
differences between the JHMM and our model, (1) the number of hidden states, (2)
some (but not all) transition probabilities. We explain them in detail below.

source 1

source 2

Zilversmit et al. (2013) Our model

r r

source 1

source 2

source 1
source 2

target

source 1
source 2

target

Figure 4.1: Difference between the JHMM [54] and our model. The
JHMM allows jumps (represented by arrowed lines) between any two positions in
a pair of source sequences representing recombination, while we restrict the jump
destination to an interval colored by red. Blue line for each model illustrates a
possible resulting jump path. Overall, our model avoids the scenario on the left
generated by the JHMM.

For a character in the target sequence, its hidden state of the JHMM is the position
of the character from the source sequence. Technically, following previous notation
in Table 2.2, in a source dataset 𝑌 consisting of 𝑛 sequences, all the possible hidden
states at character 𝑥(𝑖) of target sequence 𝑥 are 𝑠𝑗𝑘, 𝑠 ∈ {𝑀, 𝐼,𝐷}, 𝑘 ∈ {1, ..., 𝑛}, 𝑗 ∈
{1, ...,max

𝑘
𝑙𝑘}. 𝑙𝑘 is the length of kth source sequence 𝑦𝑘. For our model, 𝑠 and 𝑘

are the same as the JHMM, while for the range of source position 𝑗, it changes.

For each position in the target, we define its ‘relative position’ in the source sequence.
For the ith character in the target sequence, its relative position at source sequence
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𝑦𝑘 is 𝑟𝑘,𝑖 = 𝑖𝑛𝑡( 𝑖×𝑙𝑘
𝑚

), where 𝑚 is the length of the target, 𝑖𝑛𝑡 refers to the closest
integer. Since the jumping distance is not strictly 0, we use an interval. As shown
in the Figure 4.1, the center of this interval is the relative position (highlighted by
yellow dots), before and after 𝑟𝑘,𝑖 are both 𝑟 characters. We name 𝑟 the radius.
However, not every position in this interval exists in 𝑦𝑘, we define set 𝜔𝑘,𝑖 as a
collection of existing positions, 𝜔𝑘,𝑖 :=

[︀
max{𝑟𝑘,𝑖 − 𝑟, 1},min{𝑟𝑘,𝑖 + 𝑟, 𝑙𝑘}

]︀
. In our

model, 𝑗 ∈ 𝜔𝑘,𝑖. Apparently the range of 𝑗 is smaller compared with the JHMM,
therefore, our model reduces the number of hidden states.

The decrease in the number of jump destinations requires us to change the transition
probabilities accordingly. For the hidden state of the first character of the target
sequence, instead of making this starting point uniformly from all positions of all
source sequences in the JHMM, we choose it uniformly from

𝑛⋃︀
𝑘=1

𝜔𝑘,1. Suppose 𝑦𝑘(𝑗)

for 𝑥(𝑖) is selected with the hidden state 𝑀 𝑗
𝑘 , 𝐼𝑗𝑘 or 𝐷𝑗

𝑘, and 𝑗 ∈ 𝜔𝑘,𝑖 (we keep
the alignment not “too far” even without a jump), the hidden state of next step
and corresponding transition probabilities are shown in Table 4.1. In this table,
𝑀𝑝

𝑘′ (𝐼𝑝𝑘′ , 𝐷
𝑝
𝑘′ respectively) refers to a hidden state representing recombination, 𝑘′ ∈

{1, ..., 𝑛} ∖ {𝑘}, 𝑝 ∈ 𝜔𝑘′,𝑖+1. Our model has the same parameters as the JHMM,
gap opening probability (𝛿), gap extension probability (𝜖) and the probability of
recombination (𝜌). 𝜋𝑀 , 𝜋𝐼 and 𝜏 are the same default values with the JHMM.

Table 4.1: Transition probabilities from a given hidden state (rows) at
a current time step to all possible hidden states (columns) at next time
step. 𝑇 refers to termination.

𝑀 𝑗+1
𝑘 𝐼𝑗𝑘 𝐷𝑗+1

𝑘 𝑀𝑝
𝑘′ 𝐼𝑝𝑘′ 𝐷𝑝

𝑘′ T

𝑀 𝑗
𝑘 1-2𝛿-𝜌-𝜏 𝛿 𝛿 𝜌𝜋𝑀/𝜅 𝜌𝜋𝐼/𝜅 0 𝜏

𝐼𝑗𝑘 1-𝜖-𝜌-𝜏 𝜖 0 𝜌𝜋𝑀/𝜅 𝜌𝜋𝐼/𝜅 0 𝜏

𝐷𝑗
𝑘 1-𝜖 0 𝜖 0 0 0 0

Compared with the transition probabilities of the JHMM (Table 2.3), our model has
several modifications. Firstly, the JHMM allows the jumping to the same source
sequence, which is not biologically realistic. Our model does not permit this by
making 𝑘′ ̸= 𝑘. Secondly, we denote 𝜅 = |

𝑛⋃︀
𝑠=1,𝑠 ̸=𝑘

𝜔𝑠,𝑖+1| as the overall number of po-

sitions our model could jump to. While in the JHMM, the number of jump positions
is 𝐿 =

𝑛∑︀
𝑠=1

𝑙𝑠. Therefore, although it seems only a number changes (𝐿 to 𝜅) from

Table 2.3 to Table 4.1 (highlighted by grey), the number of columns representing
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the recombination in our model is much less than the JHMM, the summation of
each row is still 1. Overall, the transition probabilities involving recombination are
modified. Other transition probabilities that do not involve recombination remain
the same.

For training our model, we follow a similar approach to that used in [54]. We
first estimate 𝛿 and 𝜖 with the Baum-Welch algorithm, and then estimate 𝜌 over
the interval [0,0.1] using the forward algorithm with 𝛿 and 𝜖. Since the composite
likelihood with 𝜌 is a unimodal function (Figure A.2), here we adopt the golden
section search method to speed up the estimation of 𝜌. Importantly, under our new
HMM framework, we need to revise related algorithms, i.e., forward and backward
algorithms, respectively. Moreover, after estimating parameters, the computation of
Viterbi paths requires a modified Viterbi algorithm. We show these three algorithms’
derivations in Supplementary Section 4.6.1.

4.3 Simulation results

We conducted simulations to evaluate the effectiveness and efficiency of our model.
We followed a similar simulation pipeline described in Section 3.3.1:

• Step 1, we simulated an arbitrary tree under the coalescent (without recombi-
nation) using msprime [199].

• Step 2, we then simulated amino acid sequences from this tree under the WAG
model [212]. We simulated both equal-length (without indels) and unequal-
length (with indels) sequences as input. For simulating equal-length sequences,
we used Pyvolve [200], and for unequal-length sequences, we used INDELible

[201].

• Step 3, we next generated recombinants by randomly selecting the parental
sequences with uniformly distributed breakpoints. The parents were then re-
moved. For equal-length sequences, the breakpoint position is identical among
the parental sequences. For unequal-length sequences, we firstly aligned the
parental sequences (with MAFFT [197]) and chose the breakpoints randomly
from the alignment.
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There are a wide variety of parameters that might affect the model performance.
Here we considered the proportion of recombinant sequences, average number of
recombinations per recombinant sequence, number of sequences in the data, sequence
length and mutation rate. The values of each parameter were shown in Table 4.2.
For tractable simulations, we varied only one parameter in turn and kept the other
parameters fixed at default values.

An important advantage of the JHMM and our model is that sequences of unequal
length are accepted as input. To explore how variations in sequence length affect
our model, we varied the indel rate while maintaining a constant mean indel size, we
also varied the mean indel size with a constant indel rate. A greater indel rate/size
results in a greater diversity of sequence lengths. The values of indel rate and size are
in Table 4.3. In summary, there are 47 parameter combinations in our simulation.
Specifically, for equal-length sequences, there are 38 simulation settings in total;
for unequal-length sequences, there are 9 simulation settings. For each parameter
combination, we simulated 100 datasets and applied our model and the JHMM.

Table 4.2: General simulation parameters (no indels). We vary each
parameter in turn while holding the others fixed at the default values (in bold).

Parameter Values

1○ Proportion of recombinant sequences
(%)

10, 20, 30, 40, 50, 60, 70, 80, 90

2○ Average number of recombinations per
recombinant sequence

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0

3○ Dataset size (sequences) 20, 40, 60, 80, 100, 120
4○ Sequence length (AA) 75, 100, 125, 150, 175, 200
5○ Mutation rate (substitutions/site/coa-
lescent unit)

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Table 4.3: Indel simulation parameters (default values in bold). Inser-
tions and deletions are simulated at the same rate, with lengths according to a
negative binomial distribution with variance 10 and specified mean.

Parameter Values

6○ Indel rate (expected number of indels/substitution) 0.1, 0.2, 0.3, 0.4, 0.5
7○ Mean indel size (AA) 3.7, 5.2, 6.0, 6.6, 7.0
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Choosing a suitable radius 𝑟 is important for our model. The mosaic representations
from the empirical data could calibrate it. We calculated the difference between
actual jump positions and the expected positions using the mosaic representations
from the Ghana and global datasets [62]. Supplementary Figures 4.21 and 4.22 show
the resulting distributions of these distance values. We see that half of the distance
in each dataset is less than 1 amino acid, and 90% of the distance is less than 5

amino acids. The proportion of distance values captured by radii 10, 15 and 20 is
shown in Supplementary Table 4.10. In the following simulation, we chose radii 10,
15, and 20 for our model.

We trained the JHMM and our model with various radii for each dataset in turn,
followed by the generation of mosaic representations using the Viterbi algorithm. In
the following sections, we firstly examined the accuracy of improved JHMM, after
that, we compared the estimated parameters, mosaic representations and execution
time between these two models.

4.3.1 Accuracy of the improved JHMM

We aim to test the accuracy of our improved JHMM. Specifically, we aim to see
whether the improved JHMM can correctly identify the recombinant sequences and
non-recombinant sequences (in the context of sequences from different time points),
and the level of accuracy in identifying breakpoints and finding parental sequences.

To do so, we used the model to search target sequences against the parental sequences
of recombinants. Here we focused on two default parameter settings with multiple
replicates, one dataset consisting of equal-length sequences and another for unequal-
length sequences (see Table 4.2 and 4.3). One can test the accuracy using all 47
parameter combinations, but we envision the similar conclusions would hold.

We used sensitivity and specificity to measure the accuracy of our model in identify-
ing recombinants and non-recombinants. Sensitivity (or specificity) is the proportion
of recombinants (or non-recombinants) that are correctly identified. We recorded
the breakpoints of each recombinant and aimed to compute the difference between
the identified breakpoint positions and actual positions. When the inferred number
of breakpoints is different from the truth (for instance, 4 vs. 2), it is unclear how
to unambiguously match the true and inferred breakpoints, so we only focused on
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the recombinants with a correctly inferred number of breakpoints. The percentage
of such recombinants is shown in Supplementary Table 4.11.

For each correctly identified recombinant sequence, we defined its accuracy in finding
parental sequences as the proportion of amino acids from the parental sequences that
were correctly inferred. From the example mosaic representation (Figure 2.3), the
target sequence (same as its parental sequence) is AGTCKDIMMMF, while the inferred
parental sequence is AGTTKDMMMKF. We excluded the deletion (- vs. K) and treated
the mutation (C vs. T) and insertion (I vs. -) as incorrect inferences. As a result,
the accuracy for finding parents in this example is 9/11.

Overall, the improved JHMM is accurate across all measures (see Figure 4.2). We
found the mean sensitivity, specificity and accuracy values in finding parental se-
quences are all over 80%, regardless if the lengths of input sequences are equal or
unequal. The inferred breakpoint locations are also very similar to the true loca-
tions. We noticed that the specificity and accuracy in finding parental sequences are
slightly lower in the unequal-length scenario than the equal-length scenario. This
is not surprising as sequences with indels increase the difficulty in finding parental
sequences, as a consequence, more breakpoints are inferred. Moreover, a shorter ra-
dius will also worsen such inference (see panel (d) of Figure 4.2 and Supplementary
Figure 4.14). Unfortunately, this also increases the chance of introducing mutations
and indels into the mosaic representation, thus influencing the accuracy of finding
parents for recombinants.

In summary, the improved JHMM has almost the same accuracy as the JHMM, when
the radius is large. The improved model even enjoys higher sensitivity in finding
recombinant sequences than the JHMM. However, if a short radius is chosen, it
might impact the accuracy of finding parental sequences and introduce more false
positives (misidentified non-recombinants), especially when input sequences are of
unequal length.

When applying the JHMM of Zilversmit et al. [54] to a dataset of DBL𝛼 tags from a
pilot study in Ghana, we found that there is a large number of length-one segments
in the generated mosaic representations (See Figure A.7). We think this is the
artifact of the JHMM, as this model simply picks out an amino acid that is not
truly homologous. Our improved JHMM has been designed to overcome this issue.

To validate this, we firstly checked whether this phenomenon appears in our sim-
ulations or not. We got the segment length distribution from unequal-length and
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Figure 4.2: Accuracy of the improved JHMM. Mean (with 95% confidence
intervals) of (a) sensitivity, (b) specificity using the JHMM and improved JHMM
with various radii. (c) shows the distribution of bias in inferring breakpoints. (d)
shows the accuracy in finding parental sequences, each error bar represents the
mean accuracy +/− standard error.

equal-length scenario separately (shown in Supplementary Figures 4.23 and 4.24).
From these distributions, we found that there is not a tendency to find many artificial
(extremely short) segments. We further applied our improved JHMM to the Ghana
dataset of DBL𝛼 tags, and found that the excessive length-one segments disappear
(see Figure 4.3). Therefore, although the surfeit of extremely short segments is not
present in the simulations, our improved JHMM helps to reduce artificial segments
from the JHMM in the real data.
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Figure 4.3: Source segment length from the mosaic representations
using the dataset of Ghana pilot study with the JHMM and improved
JHMM. For computational purposes, we used the estimated parameters from the
JHMM when implementing the improved JHMM with radius 20.

4.3.2 Performance comparison between the JHMM and im-

proved JHMM

4.3.2.1 Estimated parameters

There are three parameters (gap opening probability 𝛿, gap extension probability 𝜖

and the probability of recombination 𝜌) to estimate for training the models. As the
radius increases, the jump destinations are broader. Therefore our model becomes
more similar to the JHMM. We expect that our model’s estimated parameters would
approach those using Zilversmit’s method.

The estimated parameters using unequal-length sequences are summarised in Fig-
ures 4.4 and 4.5, and Supplementary Figures 4.25–4.29 show the estimation results
using equal-length sequences. From these figures, we see that as the radius of im-
proved JHMM increases, the estimated values approach those of the JHMM for all
model parameters and simulation parameters. This is in line with our expectation.

The trends of estimated parameters per simulation parameter are also reasonable.
In particular, we find that the 𝛿 increases (with stable 𝜖) with indel rate and 𝜖

increases (with stable 𝛿) with indel size. They are expected as the gap opening
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probability represents the indel rate and gap extension probability represents the
indel size. 𝜌 grows with the proportion of recombinant sequences, average number of
recombinations per recombinant sequence and mutation rate. A possible explanation
is that higher number of substitutions makes the model difficult for finding the
breakpoints, and thus increases the number of recombinations.
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Figure 4.4: Mean (with 95% confidence intervals) of each estimated pa-
rameter for varying indel rate using the JHMM and improved JHMM.

4.3.2.2 Mosaic representations

Four Viterbi paths (mosaic representations) exist for each sequence: three from our
model with three different radii and one from the JHMM. We compared the Viterbi
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Figure 4.5: Mean (with 95% confidence intervals) of each estimated
parameter for varying indel size using the JHMM and improved JHMM.

paths between our model and the JHMM for each radius. For a detailed comparison,
we divided the resulting paths from the JHMM into five categories.

1. Ambiguous. The source segment occurs more than once in its full sequence.
The primary reason is that the segment is too short. Therefore it is not able
to be located uniquely.

2. Not allowed in our model. We can obtain the source segment’s true position,
but it jumps further than our maximum allowable distance using our model.
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3. Dissimilar. The paths do not have the same source sequence composition or
the same number of source sequences as our model.

4. Similar. The paths have the same source sequence composition and the same
number of source sequences as our model. They only differ at the breakpoints,
indel locations or source identities.

5. Same. Sequences’ paths are the same as our model.

For the case of equal-length sequences, we showed the frequency of these five cat-
egories when varying the proportions of recombinant sequences in Figure 4.6. See
Supplementary Figures 4.30–4.33 for the results of other parameters. We observed
that the proportion of sequences with the same and similar path between the JHMM
and our model decreases with increasing proportion of recombinant sequences and
sequence length. But even so, this proportion maintains over 80% across all sim-
ulation parameters. We also found the frequency profile (each panel of the figure)
remains among various radii per simulation parameter, this is expected as the equal-
length sequences could be treated as aligned input and breakpoints are much easier
to be inferred. Importantly, this case is favourable for the original JHMM, since we
restrict horizontal jumps, but there are no horizontal jumps to restrict here.
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Figure 4.6: Viterbi path comparison between the JHMM and improved
JHMM when varying proportions of recombinant sequences.

However, once we included the indels in the sequence generation process, the fre-
quency profile of five categories changed substantially compared with previous ones.
We noticed that this is a much larger number of sequences whose paths from the
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JHMM are not allowed in our model, and this quantity increases with the indel
rate (Figure 4.7) and indel size (Supplementary Figure 4.34). In the meantime,
the sequences with identical or nearly identical (similar) paths with our model are
declining. This is not surprising as higher diversity of sequences makes the model
difficult to find breakpoints and it is more likely to jump further than our specified
maximum allowable jump distance. In addition, by comparing the three panels of
each figure, we found more sequences whose paths estimated from the JHMM are not
allowed in our model, when the radius decreases from 20 to 10. This is reasonable,
as decreasing the radius imposes stricter constraints and eliminates more possible
paths.
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Figure 4.7: Viterbi path comparison between the JHMM and improved
JHMM when varying indel rate.

In summary, the improved JHMM has almost the same mosaic representations with
the JHMM when the input sequences are of equal length. However, when the input
sequences are of unequal length, there are more unreasonable mosaic representations
generated from the JHMM, especially when the indel rate or size is large. Our
improved JHMM avoids this consequence.

4.3.2.3 Execution time

We also examined the execution time of each model. For each position of each
target sequence, we search 𝑂(𝑛𝑟) (𝑛 is the number of sequences) positions using the
methods in our improved JHMM. However, it takes 𝑂(𝑛𝑙) (𝑙 is the average sequence
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length) in the JHMM. Therefore, the time complexity of methods in our model is
𝑂(𝑛2𝑙𝑟) where 𝑟 ≪ 𝑙, while the time complexity of methods in the JHMM is 𝑂(𝑛2𝑙2).
That is to say, ours is faster by a factor of 𝑂(𝑙/𝑟).

In the simulation, we calculated the overall running time for varying dataset size and
sequence length. As expected, the results (Figure 4.8) suggest that the running time
of our model appears to grow quadratically with the number of sequences and grow
linearly with sequence length and radius. Moreover, our model is quicker than the
JHMM as expected, suggesting that our model can be applied to datasets containing
more or longer sequences than the JHMM.
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Figure 4.8: Time (with 95% confidence intervals) taken by each model
for varying dataset size and sequence length.

There are three steps in both models, (1) estimating 𝛿 and 𝜖 with the Baum-Welch
algorithm, (2) estimating 𝜌 with the forward algorithm and (3) inferring the path
with Viterbi algorithm. We show the lower running time of each step using improved
JHMM than the JHMM in Supplementary Section 4.6.2.

Because the JHMM is a crucial component of our recombinant detection method
described in the preceding chapter, we substituted it with our improved JHMM. We
then studied the effects on the accuracy of identified recombinants. Overall, it main-
tains the accuracy of the JHMM, and we do not see any significant improvements
(Supplementary Section 4.6.3).
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4.4 Analysis of DBL𝛼 tags from a longitudinal study

of Ghana

We applied our model to detect recombinants in a large longitudinal dataset from
Ghana. As introduced in Section 1.3.2, we focused on the dataset which were col-
lected at the end of wet seasons, Survey 1 (S1), Survey 4 (S4) and Survey 5 (S5).
The IRS intervention was performed during S4, S1 and S5 represent the pre and post
IRS respectively (see Table 1.1). For the initial data pre-processing, we repeated
what we did for the pilot dataset (Section 3.5.3.1), i.e., we followed the existing
pipeline [62, 74] and clustered raw tags into DBL𝛼 types. We were interested in the
recombinants among all these types. Except this, we were also interested in detect-
ing recombinant types belonging to the upsA group only. This is because upsA var
genes are more conserved than other ups groups [71] and are expected to recombine
mostly with themselves. In Table 4.4, we show the resulting number of DBL𝛼 types
and basic information of the whole and upsA group.

Table 4.4: Data summary.

# isolates # DBL𝛼 types Average length (sd) UpsA Average length (sd)

S1 918 35,095 125 (8.3) 2,200 115 (3.9)
S4 393 15,876 124 (8.1) 1,453 115 (3.4)
S5 510 18,668 124 (8.4) 1,615 115 (3.6)

Our model requires the specification of the target and source sequences and a radius.
There are two time periods among these three surveys (S1-S4, S4-S5). For each
period, we assigned the sequences from the more recent survey as the target and the
another as the source. For instance, S4 is the target while older S1 is the source in
the first period. We determined a sequence as a recombinant if there are at least two
contributing source segments in its mosaic representation. Regarding the radius, we
found that a bigger radius resulted in more accurate estimation in our simulation
results, so we set the radius as 20.

We notice the parameter estimation is too slow using this large longitudinal dataset.
We ran the analysis on the high performance computing (HPC) system at the Uni-
versity of Melbourne (72 Intel(R) Xeon(R) Gold 6254 CPU cores @ 3.10GHz, 768GB
RAM). When the number of target and source sequences is both 1, 000, estimating
𝛿 and 𝜖 took over 55 days. When estimating 𝜌, if we follow the strategy of [62] by
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only sampling 1,000 targets and keeping all sources, it finally ends up running over
104 jobs on HPC. Although each job cost around one day and all jobs could run in
parallel theoretically, the practical running time is largely affected by the availability
of HPC. Taken together, training the full dataset is time prohibited.

We dealt with this issue by randomly sampling from the dataset and using the
sampled dataset to estimate parameters. We studied the effects of sampling and
proposed to sample 50 target sequences and 500 source sequences (see more details
in Supplementary Section 4.6.4) to estimate all parameters. Table 4.5 shows the
resulting inferred parameters, and we see that the upsA group seems to have smaller
𝛿 and 𝜌 than the parameters from all sequences, which is reasonable.

Table 4.5: Estimated parameters on the longitudinal dataset of Ghana.
S1-S4 and S4-S5 represent two time periods, Survey 1 to Survey 4 and Survey 4
to Survey 5. When the types belonging to upsA group only were considered, we
denote with a bracket.

𝛿 𝜖 𝜌

S1-S4 0.015 0.833 0.045
S4-S5 0.015 0.806 0.043
S1 (upsA)-S4 (upsA) 0.003 0.877 0.014
S4 (upsA)-S5 (upsA) 0.003 0.897 0.012

With estimated parameters, we computed Viterbi paths in parallel. We divided all
targets into subsets, and each time 30 sequences (against all source sequences in the
dataset) were calculated on one core. In Table 4.6, we show the average running
time across all subsets, and the time for estimating all parameters. From the result-
ing mosaic representations (see examples in Supplementary Figure 4.42), we finally
identified 4,241 and 10,125 recombinants in each period using the whole data, and
199 and 494 recombinants using the upsA group only. As shown in Figure 4.9, the
proportion of identified recombinants increases with time. This might be associated
with IRS intervention and needs further exploration. Moreover, the proportions of
recombinants from the upsA group are generally smaller than the proportions from
the whole data. To explore the reasons for this difference, we conducted simulations
and found that this difference is due to the high similarities and low recombination
rate among upsA DBL𝛼 tags (see Supplementary Section 4.6.5). We also note that
from this supplementary section, we see a high similarity between our simulated
sequences and empirical DBL𝛼 tags.
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Table 4.6: Time consumption (hours) of the algorithm on the longitu-
dinal dataset. S1-S4 and S4-S5 represent two time periods, Survey 1 to Survey
4 and Survey 4 to Survey 5. When the types belonging to upsA group only were
considered, we denote with a bracket.

Estimation of 𝛿 and 𝜖 Estimation of 𝜌 Viterbi path (# subsets)

S1-S4 33.5 10.9 41.2 (530)
S4-S5 32.4 11.0 14.0 (623)
S1 (upsA)-S4 (upsA) 23.5 9.5 1.6 (49)
S4 (upsA)-S5 (upsA) 29.3 9.5 1.0 (54)
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Figure 4.9: The proportion of identified recombinants from our model
using the sequences from upsA group only and the whole data. S1-S4
and S4-S5 in x-axis represent two time periods, Survey 1 to Survey 4 and Survey
4 to Survey 5.

To explore the recombination patterns in this longitudinal dataset, we followed the
analysis described in Section 3.3.2. We discuss the results as below.

4.4.1 Recombinations from the same ups group or domain

subclass

In Section 3.3.2.1, we used the pilot dataset to test the hypothesis that var recom-
bination occurs more frequently within the same ups group [61]. We first calculated
the proportion of recombination triples in which one parent and the child, two par-
ents and both parents and child (family) belong to the same ups group or DBL𝛼
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subclass. We also examined two distinct ups group classification schemes: one clas-
sifies each sequence to upsA and upsB/C using the existing pipeline [74], and the
other classifies each sequence into upsA, upsB and upsC using the BLASTP [220]
search and the reference database of Rask et al. [46]. We used the BLASTP to
match each sequence to the closest reference sequence, then classified that sequence
to the ups group of the closest reference sequence. We found that recombination
happens more often in both the same ups group and domain subclass significantly.

Using our time series data, we again tested this pattern. It is worth mentioning that
later we proposed an accurate method for classifying sequences into upsA, upsB and
upsC three groups, as described in the following Chapter 5. Therefore, we used this
method instead of the previous BLASTP.

We show the results in Table 4.7. It indicates that regardless of the dataset used, the
proportions of parent-child and two parents belonging to the same ups group are
significantly higher than the expected proportions, here the expected proportions
were computed based on the independence of parents’ ups groups and the ups group
sharing between child and one of the parents. We used the one-sample t-test at 5%
significance level for comparing proportions statistically. In addition, we see that
recombination occurs preferentially within the same DBL𝛼 subclass with only one
exception. These reaffirm our previous findings. When comparing Tables 3.1 and
4.7, we find the proportions of all three patterns (parent-child, parents and family)
belonging to the same ups group or domain subclass are roughly the same over
time. Although we used different methods for identifying recombinants and applied
them to datasets from different time points, this particular recombination pattern
remains.

Table 4.7: Inferred proportions of recombinants from the same ups
groups or DBL𝛼 subclasses. Expected proportions are given in brackets. All
𝑝-values are highly significant (< 2.2×10−16) except for the entries marked in red.

Parent-child Parents Family

UpsA vs. upsB/C 100.0% (94.1%) 99.2% (88.2%) 99.2% (88.2%)
S1-S4 UpsA, B and C 86.7% (73.1%) 57.8% (46.2%) 44.9% (46.2%)

DBL𝛼 60.1% (54.2%) 22.2% (8.4%) 16.3% (8.4%)
UpsA vs. upsB/C 99.9% (91.7%) 98.9% (83.4%) 98.8% (83.4%)

S4-S5 UpsA, B and C 84.8% (72.5%) 56.2% (45.0%) 41.7% (45.0%)
DBL𝛼 53.5% (53.6%) 20.3% (7.2%) 13.6% (7.2%)
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4.4.2 Recombination proportions among ups groups or do-

main subclasses

We found different proportions of recombinants among the ups groups using the pilot
dataset (Section 3.3.2.1). To explore whether this pattern maintains, we also studied
it using our time series data. The proportions of recombinants in each ups group
for all the datasets are shown in Table 4.8. We found that regardless of the dataset
used, there was a significant association between recombination and ups groups (both
𝑝 < 2.2 × 10−16 from a 𝜒2 contingency table test), with upsA having the smallest
proportion of recombinants, and upsC having the largest. This ranking conforms to
previous findings using the pilot dataset (Section 3.3.2.1). Next, when comparing
the proportions of recombinants over time, we see a significant drop followed by a
moderate increase for each ups group from pilot to S5. We suggest this should be
investigated further by accounting for biological factors like IRS intervention.

Table 4.8: Proportions of recombinants among ups groups. The overall
proportion of recombinants in each dataset is shown in brackets.

UpsA UpsB UpsC

Pilot (85.4%) 82.3% 84.9% 87.6%
S1-S4 (26.7%) 13.8% 26.9% 30.5%
S4-S5 (54.2%) 31.7% 54.1% 60.6%

Using the pilot dataset, we also identified seven DBL𝛼 subclasses whose proportions
of recombinants differed significantly from the average under the Bonferroni correc-
tion, as shown in Figure 3.4. DBL𝛼0.1, 0.5 and 0.11 were too high, DBL𝛼0.3, 0.8,
0.9 and 0.23 were too low. Using this time series data, we also calculated the propor-
tions of recombinants among DBL𝛼 subclasses. We show the results in Figures 4.10
and 4.11. Importantly, we find all the previously identified seven DBL𝛼 subclasses
differed again from the average significantly in this longitudinal dataset. Moreover,
their directions (too high or too low) remain the same. Apart from these seven
DBL𝛼 subclasses, we identified seven additional ones in both periods. DBL𝛼0.4,
0.18, 1.2, 1.4, 1.8 and 2 were too low, while DBL𝛼0.14 was too high.
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Figure 4.10: Proportions (and 95% confidence intervals) of recombi-
nants for each DBL𝛼 subclass using the S1-S4 data. Subclasses which
are significantly different from the overall average (under a correction for multiple
testing) are highlighted in red. The horizontal dashed line displays the overall
proportion of recombinant sequences in the entire dataset.
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Figure 4.11: Proportions (and 95% confidence intervals) of recombi-
nants for each DBL𝛼 subclass using the S4-S5 data. Subclasses which
are significantly different from the overall average (under a correction for multiple
testing) are highlighted in red. The horizontal dashed line displays the overall
proportion of recombinant sequences in the entire dataset.
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4.4.3 Conservation level between recombinant and non-recombinant

types

We next studied the frequencies of DBL𝛼 types. Based on the results (Section 3.3.2.3)
using the pilot dataset, we found that the non-recombinant types were more con-
served than the recombinants. We want to evaluate whether this pattern still exists
in our time series data. It turned out that both two time periods datasets demon-
strated that non-recombinants occurred significantly more often than recombinants
(average 4.2 vs. 3.1 using S1-S4 data; average 5.0 vs. 2.7 using S4-S5 data. Both
𝑝 < 2.2 × 10−16 from Wilcoxon rank sum tests). In addition, we see an increase
in the mean type occurrences among non-recombinants and a decrease in the mean
type occurrences among recombinants with time (Supplementary Figure 4.43).

We subsequently examined the frequency distributions of DBL𝛼 types in isolates.
We discovered that their distributions are highly right-skewed (Supplementary Fig-
ures 4.44 and 4.45), and they are similar to Figure 3.26 from the pilot dataset. Re-
peating the analysis in Section 3.3.2.3, we compared the proportion of frequent DBL𝛼
types between non-recombinant and recombinant groups. The results (Table 4.9)
likewise indicated a greater proportion of frequent types in the non-recombinants
than the recombinants; this effect is statistically significant in all datasets when the
threshold is less than 10. Moreover, the proportion of frequent types in recombi-
nants declines from pilot to S5, regardless of the threshold used. In contrast, the
proportion of frequent types in non-recombinants grows in the same time period
(Supplementary Figure 4.46). This suggests that recombinant types tend to be less
stable over time than non-recombinants.

Table 4.9: Proportions of frequent (larger than the threshold) recom-
binant and non-recombinant DBL𝛼 types.

Threshold 5 10 15 20

Recombinants 7.2% 2.1% 1.6% 1.2%
S1-S4 Non-recombinants 21.5% 6.2% 2.8% 1.8%

𝑃 -value (𝜒2 test) 2.961× 10−14 3.027× 10−4 0.112 0.368
Recombinants 5.4% 0.8% 0.4% 0.2%

S4-S5 Non-recombinants 28.2% 8.8% 4.6% 2.6%
𝑃 -value (𝜒2 test) < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 2.685× 10−11
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4.4.4 Breakpoint distribution

We analysed the distribution of breakpoints in each dataset. We show the results in
Figure 4.12. Similar to the breakpoint distribution of the pilot dataset (Figure 3.5),
we found the recombination rate is also not constant in the entire dataset or upsA
group data. All the breakpoint distributions display recombination peaks at some
positions of the DBL𝛼 sequence. We discovered frequent recombinations at 25%
and 85% positions of sequence, regardless of the dataset used. Intriguingly, we see
a distribution peak in the middle of the sequence, no matter using the upsA group
sequences in time series data or pilot dataset. However, this sole peak is substi-
tuted by two peaks before and after the sequence center using the whole time series
data. We suggest that more biological factors should be considered for reasonable
interpretations.
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Figure 4.12: Positions of recombination breakpoints. Left panel was from
the upsA group sequences, while right panel was obtained using the whole data.

4.5 Discussion

In this chapter, we have proposed an improved JHMM for detecting recombination
from unaligned sequences. This model adds constraints on the jump destinations,
based on the underlying reality in the uncalculated alignment of homologous se-
quences. Extensive simulations demonstrate the model’s accuracy and efficiency.
With a bigger radius, the estimated parameters of improved JHMM are closer to
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the JHMM parameters, and two models have similar accuracy in identifying re-
combination. Importantly, the improved JHMM greatly reduces the artificial short
segments from the JHMM in the real dataset of DBL𝛼 tags. This would be beneficial
for finding the breakpoint positions more accurately. The efficiency improvement al-
lows us to train the model on a dataset of over 10,000 tags, which only could have
been done before with Viterbi training. Finally, we apply our model to detect recom-
binants between two time-separated datasets in Ghana. We find the recombination
patterns within these datasets similar to the ones using the pilot dataset, and most
patterns maintain with time.

Determining a suitable radius is important for the improved JHMM, and our study
suggests that it depends on the user’s preferences. The mosaic representations
from empirical datasets could be used to calibrate the radius. A larger radius
leads to a higher accuracy in finding parental sequences and less misidentified non-
recombinants when the input sequences are of unequal length, in the meantime,
using a larger radius increases the computational time linearly. Therefore, choos-
ing the radius is a trade-off between the model accuracy and efficiency. We note
that an implicit assumption of this model is that jumps longer than the radius are
impossible. This is a strong and perhaps unrealistic assumption since we constrain
the jump distance within an explicit interval. If the recombination occurs between
homologous segments, the jump distance is zero with some obfuscating due to in-
dels. Therefore, the jump distance from the empirical data is usually presented by
a distribution rather than an interval.

Our model naturally inherits several advantages of the JHMM for detecting recom-
binations. Our model (1) is not limited to DBL𝛼 tags, and is applicable to any
biological sequences (DNA or protein) involving recombination; (2) does not require
a multiple sequence alignment or a reference panel of known non-recombinants as
input; (3) accepts equal-length or unequal-length sequences; (4) can also detect re-
combinants when applying to time series data. One caveat is that the jump distances
should be small so that using an interval as the constraint is relatively sensible.

Although our model is better than the original JHMM, it still has possible further
improvements. In our model, the maximum jump distance is designed to be the same
across all sequence positions. Therefore, exploring the jump distance distributions
at different positions is useful. If they show a different pattern, setting various radii
instead of a sole one would be more sensible. Moreover, estimating parameters 𝛿

and 𝜖 for large datasets is still time-consuming, and we suggest an acceleration of
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the Baum-Welch algorithm (like the methods described in [221]) would be helpful.
Lastly, from the resulting mosaic representations of real datasets, we notice that some
target sequences are fully matched to a single source sequence without any mutation,
indels or recombination. This is because there are duplicated DBL𝛼 types between
the target and source databases. We believe excluding the duplication would speed
up the Viterbi path calculation.

There are also several future works of simulations. In our current simulation pipeline,
we simulated all sequences from the same time point. Each sequence was the target,
and all the remaining sequences were the source. However, we applied our model
to time-separated datasets in real data analysis. Therefore, the simulation does not
fully simulate the case in the real world, and we suggest this simulation protocol
could be improved by simulating datasets from different time points. For instance,
we could manually specify the parents from a previous time point and simulate the
recombinant child from a recent time. In addition, when applying to the time series
data, the JHMM identifies recombinants’ putative parents from ancestral sequences
which most resemble their parents. We could mimic this by sampling datasets
from the simulated datasets at each time point and examining their impacts on the
inference. This improvement is also helpful for exploring the effects of various time
intervals and sampling coverage on the performance of our model. Another thing is
that we sampled datasets for estimating parameters in real data analysis since the
computational burden from large data size. We could examine the effects of such
sampling strategy using simulations as well.

Finally, further analysis of DBL𝛼 tags is needed in the future. There are a few
unsolved questions in our current work. For instance, the proportion of recombinants
increases from S1 to S5, and the reasons are still uncovered. Although we suspect
this might be associated with IRS intervention, more quantitative analysis is required
to support this hypothesis. We also believe more recombination patterns, such as
meiotic and mitotic recombination, should be investigated. Importantly, all the
recombination patterns we obtained are based on the datasets from a single district
of Ghana; the patterns are compared across only three datasets (the pilot, S1-S4 and
S4-S5). Studying the distribution of recombination patterns would be informative
if we apply our model to datasets from different geographical locations (like the
datasets from ten countries in [62]). To explore statistically significant recombination
patterns, it is also imperative to detect recombination in datasets from more time
points.
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Codes and data availability

The DBL𝛼 tags from the Ghana study at Survey 1, Survey 4 and Survey 5 are
publicly available (GenBank BioProject Number: PRJNA396962). Source codes are
freely available at the Github repository (https://github.com/qianfeng2/impJHMM)
or Zenodo (https://zenodo.org/records/13826732).

4.6 Supplementary materials

4.6.1 Algorithm derivation

4.6.1.1 Viterbi algorithm

For a target sequence 𝑥 and source sequence 𝑦𝑘, we compute three 𝑚 + 2 by 𝑙𝑘 + 2

Viterbi matrices. ∀𝑖, 𝑖 ∈ {1, ...,𝑚} and ∀𝑗, 𝑗 ∈ {1, ..., 𝑙𝑘}, 𝑣(𝑖,𝑀 𝑗
𝑘) is the probability

of the most probable alignment, which ends by (𝑥(𝑖), 𝑦𝑘(𝑗)) with hidden state 𝑀 𝑗
𝑘 .

Similarly, 𝑣(𝑖, 𝐼𝑗𝑘) and 𝑣(𝑖,𝐷𝑗
𝑘) are the probabilities of the most probable alignment

which ends (𝑥(𝑖),−) or (−, 𝑦𝑘(𝑗)) with hidden state 𝐼𝑗𝑘 or 𝐷𝑗
𝑘 respectively.

Initialization For computational purpose, we set the margin of each matrix as 0.

𝑣(0,𝑀 𝑗
𝑘) = 𝑣(0, 𝐼𝑗𝑘) = 𝑣(0, 𝐷𝑗

𝑘) = 𝑣(𝑚+ 1,𝑀 𝑗
𝑘) = 𝑣(𝑚+ 1, 𝐼𝑗𝑘) = 𝑣(𝑚+ 1, 𝐷𝑗

𝑘) = 0

𝑣(𝑖,𝑀0
𝑘 ) = 𝑣(𝑖, 𝐼0𝑘) = 𝑣(𝑖,𝐷0

𝑘) = 𝑣(𝑖,𝑀 𝑙𝑘+1
𝑘 ) = 𝑣(𝑖, 𝐼 𝑙𝑘+1

𝑘 ) = 𝑣(𝑖,𝐷𝑙𝑘+1
𝑘 ) = 0

With probability 𝜋𝑀 , the path starts with a match state.

𝑣(1,𝑀 𝑗
𝑘) =

⎧⎪⎨⎪⎩
𝜋𝑀⃒⃒ 𝑛⋃︀

𝑘=1

𝜔𝑘,1

⃒⃒𝑒(𝑥(1) | 𝑦𝑘(𝑗)) 𝑗 ∈ 𝜔𝑘,1

0 otherwise

With probability 𝜋𝐼 = 1− 𝜋𝑀 , the path starts with an insert state.

𝑣(1, 𝐼𝑗𝑘) =

⎧⎪⎨⎪⎩
𝜋𝐼⃒⃒ 𝑛⋃︀

𝑘=1
𝜔𝑘,1

⃒⃒𝑒(𝑥(1)) 𝑗 ∈ 𝜔𝑘,1

0 otherwise
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Recurrence We define 𝑍 ∈ {𝑀, 𝐼}. For 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑙𝑘,

𝑣(𝑖,𝑀 𝑗
𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
𝑒(𝑥(𝑖) | 𝑦𝑘(𝑗)) ·max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1− 2𝛿 − 𝜌− 𝜏)𝑣(𝑖− 1,𝑀 𝑗−1
𝑘 )

(1− 𝜖− 𝜌− 𝜏)𝑣(𝑖− 1, 𝐼𝑗−1
𝑘 )

(1− 𝜖)𝑣(𝑖− 1, 𝐷𝑗−1
𝑘 )

𝜌𝜋𝑀⃒⃒ 𝑛⋃︀
𝑘′=1,𝑘′ ̸=𝑘

𝜔𝑘′,𝑖

⃒⃒ max
𝑍,𝑘′,𝑗*,𝑗*∈𝜔𝑘′,𝑖−1

𝑣(𝑖− 1, 𝑍𝑗*

𝑘′ )

𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise

𝑣(𝑖, 𝐼𝑗𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑒(𝑥(𝑖)) ·max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛿𝑣(𝑖− 1,𝑀 𝑗

𝑘)

𝜖𝑣(𝑖− 1, 𝐼𝑗𝑘)
𝜌𝜋𝐼⃒⃒ 𝑛⋃︀

𝑘′=1,𝑘′ ̸=𝑘

𝜔𝑘′,𝑖

⃒⃒ max
𝑍,𝑘′,𝑗*,𝑗*∈𝜔𝑘′,𝑖−1

𝑣(𝑖− 1, 𝑍𝑗*

𝑘′ )
𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise

𝑣(𝑖,𝐷𝑗
𝑘)

⎧⎪⎪⎨⎪⎪⎩
max

{︃
𝛿𝑣(𝑖,𝑀 𝑗−1

𝑘 )

𝜖𝑣(𝑖,𝐷𝑗−1
𝑘 )

𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise

We do not let two sequences get “too far” out of alignment even without a jump, so
we make the corresponding entries of matrices be 0 when 𝑗 /∈ 𝜔𝑘,𝑖. With recurrence,
three matrices are computed row by row (the first index 𝑖).

Termination 𝑣𝐸 = 𝜏 max
𝑍,𝑘,𝑗,𝑗∈𝜔𝑘,𝑚

𝑣(𝑚,𝑍𝑗
𝑘).

We keep pointers and trace back for finding the best alignment.

4.6.1.2 Forward algorithm

For a target sequence 𝑥 and source sequence 𝑦𝑘, we compute three 𝑚 + 2 by 𝑙𝑘 + 2

forward matrices. ∀𝑖, 𝑖 ∈ {1, ...,𝑚} and ∀𝑗, 𝑗 ∈ {1, ..., 𝑙𝑘}, 𝑓(𝑖,𝑀 𝑗
𝑘) is the probability

of observing the partial alignment from the beginning to (𝑥(𝑖), 𝑦𝑘(𝑗)), which ends
with the hidden state 𝑀 𝑗

𝑘 . Similarly, 𝑓(𝑖, 𝐼𝑗𝑘) and 𝑓(𝑖,𝐷𝑗
𝑘) are the probabilities of
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observing the partial alignment from the beginning to (𝑥(𝑖),−) or (−, 𝑦𝑘(𝑗)), which
ends with states 𝐼𝑗𝑘 or 𝐷𝑗

𝑘.

Initialization For computational purpose, we set the margin of each matrix as 0.

𝑓(0,𝑀 𝑗
𝑘) = 𝑓(0, 𝐼𝑗𝑘) = 𝑓(0, 𝐷𝑗

𝑘) = 𝑓(𝑚+ 1,𝑀 𝑗
𝑘) = 𝑓(𝑚+ 1, 𝐼𝑗𝑘) = 𝑓(𝑚+ 1, 𝐷𝑗

𝑘) = 0

𝑓(𝑖,𝑀0
𝑘 ) = 𝑓(𝑖, 𝐼0𝑘) = 𝑓(𝑖,𝐷0

𝑘) = 𝑓(𝑖,𝑀 𝑙𝑘+1
𝑘 ) = 𝑓(𝑖, 𝐼 𝑙𝑘+1

𝑘 ) = 𝑓(𝑖,𝐷𝑙𝑘+1
𝑘 ) = 0

and

𝑓(1,𝑀 𝑗
𝑘) =

⎧⎪⎨⎪⎩
𝜋𝑀⃒⃒ 𝑛⋃︀

𝑘=1
𝜔𝑘,1

⃒⃒𝑒(𝑥(1) | 𝑦𝑘(𝑗)) 𝑗 ∈ 𝜔𝑘,1

0 otherwise

𝑓(1, 𝐼𝑗𝑘) =

⎧⎪⎨⎪⎩
𝜋𝐼⃒⃒ 𝑛⋃︀

𝑘=1
𝜔𝑘,1

⃒⃒𝑒(𝑥(1)) 𝑗 ∈ 𝜔𝑘,1

0 otherwise

Recurrence For 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑙𝑘,

𝑓(𝑖,𝑀 𝑗
𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑒(𝑥(𝑖) | 𝑦𝑘(𝑗)) ·
[︁

(1− 2𝛿 − 𝜌− 𝜏)𝑓(𝑖− 1,𝑀 𝑗−1
𝑘 )+

(1− 𝜖− 𝜌− 𝜏)𝑓(𝑖− 1, 𝐼𝑗−1
𝑘 )+

(1− 𝜖)𝑓(𝑖− 1, 𝐷𝑗−1
𝑘 )+

𝜌𝜋𝑀⃒⃒ 𝑛⋃︀
𝑘′=1,𝑘′ ̸=𝑘

𝜔𝑘′,𝑖

⃒⃒ ∑︀
𝑍,𝑘′,𝑗*,𝑗*∈𝜔𝑘′,𝑖−1

𝑓(𝑖− 1, 𝑍𝑗*

𝑘′ )
]︁

𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise

𝑓(𝑖, 𝐼𝑗𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑒(𝑥(𝑖)) ·
[︁

𝛿𝑓(𝑖− 1,𝑀 𝑗
𝑘)+

𝜖𝑓(𝑖− 1, 𝐼𝑗𝑘)+
𝜌𝜋𝐼⃒⃒ 𝑛⋃︀

𝑘′=1,𝑘′ ̸=𝑘

𝜔𝑘′,𝑖

⃒⃒ ∑︀
𝑍,𝑘′,𝑗*,𝑗*∈𝜔𝑘′,𝑖−1

𝑓(𝑖− 1, 𝑍𝑗*

𝑘′ )
]︁

𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise
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𝑓(𝑖,𝐷𝑗
𝑘) =

{︃
𝛿𝑓(𝑖,𝑀 𝑗−1

𝑘 ) + 𝜖𝑓(𝑖,𝐷𝑗−1
𝑘 ) 𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise

With recurrence, three matrices are computed row by row (first index 𝑖).

Termination 𝑓𝐸 = 𝜏
∑︀

𝑍,𝑘,𝑗,𝑗∈𝜔𝑘,𝑚

𝑓(𝑚,𝑍𝑗
𝑘).

4.6.1.3 Backward algorithm

For a target sequence 𝑥 and source sequence 𝑦𝑘, we compute three 𝑚 + 2 by 𝑙𝑘 + 2

backward matrices. ∀𝑖, 𝑖 ∈ {1, ...,𝑚} and ∀𝑗, 𝑗 ∈ {1, ..., 𝑙𝑘}, 𝑏(𝑖,𝑀 𝑗
𝑘) is the probabil-

ity of observing the partial alignment from (𝑥(𝑖), 𝑦(𝑗)) to the end, given the hidden
state 𝑀 𝑗

𝑘 for (𝑥(𝑖), 𝑦(𝑗)). Similarly, 𝑏(𝑖, 𝐼𝑗𝑘) and 𝑏(𝑖,𝐷𝑗
𝑘) are the probabilities of ob-

serving the partial alignment from the (𝑥(𝑖),−) or (−, 𝑦𝑘(𝑗)) to the end, given the
hidden state 𝐼𝑗𝑘 for observing (𝑥(𝑖),−) or the hidden state 𝐷𝑗

𝑘 for (−, 𝑦𝑘(𝑗)).

Initialization For computational purpose, we set the margin of each matrix as 0.

𝑏(0,𝑀 𝑗
𝑘) = 𝑏(0, 𝐼𝑗𝑘) = 𝑏(0, 𝐷𝑗

𝑘) = 𝑏(𝑚+ 1,𝑀 𝑗
𝑘) = 𝑏(𝑚+ 1, 𝐼𝑗𝑘) = 𝑏(𝑚+ 1, 𝐷𝑗

𝑘) = 0

𝑏(𝑖,𝑀0
𝑘 ) = 𝑏(𝑖, 𝐼0𝑘) = 𝑏(𝑖,𝐷0

𝑘) = 𝑏(𝑖,𝑀 𝑙𝑘+1
𝑘 ) = 𝑏(𝑖, 𝐼 𝑙𝑘+1

𝑘 ) = 𝑏(𝑖,𝐷𝑙𝑘+1
𝑘 ) = 0

With the probability of termination 𝜏 ,

𝑏(𝑚,𝑀 𝑗
𝑘) =

{︃
𝜏 𝑗 ∈ 𝜔𝑘,𝑚

0 otherwise

𝑏(𝑚, 𝐼𝑗𝑘) =

{︃
𝜏 𝑗 ∈ 𝜔𝑘,𝑚

0 otherwise
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Recurrence For 𝑖 = 𝑚, ..., 1, 𝑗 = 𝑙𝑘, ..., 1,

𝑏(𝑖,𝑀 𝑗
𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− 2𝛿 − 𝜌− 𝜏)𝑒(𝑥(𝑖+ 1) | 𝑦𝑘(𝑗 + 1))𝑏(𝑖+ 1,𝑀 𝑗+1
𝑘 )

+𝛿𝑒(𝑥(𝑖+ 1))𝑏(𝑖+ 1, 𝐼𝑗𝑘) + 𝛿𝑏(𝑖,𝐷𝑗+1
𝑘 )

+ 𝜌𝜋𝑀⃒⃒ 𝑛⋃︀
𝑘′=1,𝑘′ ̸=𝑘

𝜔𝑘′,𝑖+1

⃒⃒ ∑︀
𝑘′

∑︀
𝑝,𝑝∈𝜔𝑘′,𝑖+1

𝑏(𝑖+ 1,𝑀𝑝
𝑘′)𝑒(𝑥(𝑖+ 1) | 𝑦𝑘′(𝑝))

+ 𝜌𝜋𝐼⃒⃒ 𝑛⋃︀
𝑘′=1,𝑘′ ̸=𝑘

𝜔𝑘′,𝑖+1

⃒⃒ ∑︀
𝑘′

∑︀
𝑝,𝑝∈𝜔𝑘′,𝑖+1

𝑏(𝑖+ 1, 𝐼𝑝𝑘′)𝑒(𝑥(𝑖+ 1)) 𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise

𝑏(𝑖, 𝐼𝑗𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− 𝜖− 𝜌− 𝜏)𝑒(𝑥(𝑖+ 1) | 𝑦𝑘(𝑗 + 1))𝑏(𝑖+ 1,𝑀 𝑗+1
𝑘 )

+𝜖𝑒(𝑥(𝑖+ 1))𝑏(𝑖+ 1, 𝐼𝑗𝑘)

+ 𝜌𝜋𝑀

|
𝑛⋃︀

𝑘′=1,𝑘′ ̸=𝑘

𝜔𝑘′,𝑖+1|

∑︀
𝑘′

∑︀
𝑝,𝑝∈𝜔𝑘′,𝑖+1

𝑏(𝑖+ 1,𝑀𝑝
𝑘′)𝑒(𝑥(𝑖+ 1) | 𝑦𝑘′(𝑝))

+ 𝜌𝜋𝐼

|
𝑛⋃︀

𝑘′=1,𝑘′ ̸=𝑘

𝜔𝑘′,𝑖+1|

∑︀
𝑘′

∑︀
𝑝,𝑝∈𝜔𝑘′,𝑖+1

𝑏(𝑖+ 1, 𝐼𝑝𝑘′)𝑒(𝑥(𝑖+ 1)) 𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise

𝑏(𝑖,𝐷𝑗
𝑘) =

{︃
(1− 𝜖)𝑒(𝑥(𝑖+ 1) | 𝑦𝑘(𝑗 + 1))𝑏(𝑖+ 1,𝑀 𝑗+1

𝑘 ) + 𝜖𝑏(𝑖,𝐷𝑗+1
𝑘 ) 𝑗 ∈ 𝜔𝑘,𝑖

0 otherwise

With recurrence, three matrices are computed row by row (the first index 𝑖).

Termination 𝑏 =
∑︀
𝑘

∑︀
𝑗,𝑗∈𝜔𝑘,1

{𝑏(1,𝑀 𝑗
𝑘)𝑒(𝑥(1) | 𝑦𝑘(𝑗))𝜋𝑀/𝜄 + 𝑏(1, 𝐼𝑗𝑘)𝑒(𝑥(1))𝜋𝐼/𝜄},

where 𝜄 =
⃒⃒ 𝑛⋃︀
𝑘=1

𝜔𝑘,1

⃒⃒
.

4.6.2 Running time for each step of the improved JHMM

Since the algorithm complexity of each step is the same, we expect the running
time of each step using our improved JHMM is lower than the JHMM. We therefore
calculated the running time of both models for each step from the simulation, and
found the results (Supplementary Figures 4.35–4.41) agree with this expectation.
In addition, since the parameters that affect the running time of our model are
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only dataset size, sequence length and radius, we found from the simulation results
that the running time of our improved JHMM is stable when varying other param-
eters (proportions of recombinant sequences, average number of recombinations per
recombinant sequence, indel rate and indel size). This matches our expectations.
Interestingly, we noticed that there is a slight running time decrease in estimating 𝜌

when the mutation rate increases from 0.1 to 0.5 (Supplementary Figure 4.39), this
is because the upper bound of 𝜌 is min{1 − 2𝛿 − 𝜏, 1 − 𝜖 − 𝜏}, striking change of
estimated 𝜖 (Supplementary Figure 4.29) reduces the range of 𝜌 (the input of golden
section search), thus decreasing the running time of this step.

4.6.3 Effects of improved JHMM on the accuracy of identified

recombinants

We used our improved JHMM as the first step in the previous recombinant detec-
tion algorithm (Chapter 3) and applied it to the simulated datasets. We can see
(Figure 4.13) that our improved JHMM has slightly higher sensitivity and lower
specificity than the conventional JHMM. This can be explained by more triples
identified by our model, as shown in Figure 4.14. By setting a radius, our model
eliminates more paths and results in more recombination triples. As a result, our
model has higher true positive and false positive rates. Moreover, increasing the
radius makes our model similar to the JHMM. Therefore, the resulting sensitivity
and specificity get closer to the ones using the JHMM. This satisfies our expecta-
tions too. Overall, there is no significant accuracy improvement using this improved
JHMM for identifying recent recombinants with our algorithm in Chapter 3.

4.6.4 Sampling effects on the estimated parameters

4.6.4.1 Sampling strategy

When estimating parameters, we found that the implementation of the Baum-Welch
algorithm for estimating 𝛿 and 𝜖 was rather slow. Therefore, we decided to randomly
sample without replacement from the whole dataset, and use the sampled data for
estimating parameters. In this step, the probability of recombination 𝜌 was set to 0,
so there is no recombination, and we implement the Baum-Welch algorithm under a
pair HMM. Based on the nature of this algorithm, except sampling sequences from
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Figure 4.13: Sensitivity and specificity (and 95% CIs) for varying indel
rate.

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5

Indel rate (indels/substitution)

D
et

ec
te

d 
tr

ip
le

s

Zilversmit
Radius 10
Radius 15
Radius 20

Figure 4.14: Number of identified recombination triples (with 95% CIs)
using our model with various radii and the JHMM.

the datasets, we can also sample pairs, where each pair comprises a single target
and a single source sequence. In total, we explored three strategies below.

I. Sampling sequences from the target and source datasets before the Baum-
Welch algorithm.

II. Sampling pairs from the target and source datasets before the Baum-Welch
algorithm.
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III. Sampling sequences from the target and source datasets for each iteration
within the Baum-Welch algorithm.

To evaluate these three options, we created a ‘temporary’ population by randomly
sampling 100 sequences from both S1 and S4. The 100 sampled sequences of S4
formed a new target dataset, and the 100 sampled sequences from S1 formed a new
source dataset. This new dataset allowed us to apply the Baum-Welch algorithm1

directly and get estimated non-jump parameters (𝛿 and 𝜖). We then subsampled
from this reference population using the above three strategies and evaluated them.

When sampling sequences with strategies I and III, we sampled from targets and
sources without replacement with a range of sizes (from 10 to 50). The number
of sampled targets is the same as the number of sampled sources. We resampled
100 datasets from the temporary population for each size and estimated parameters
for each dataset in turn. When sampling pairs with strategy II, we sampled from
100×100 pairs without replacement. The number of sampled pairs ranged from 102

to 502. Same with other strategies, 100 datasets were generated again.

We show the results of these three strategies in Figure 4.15. Overall, the more data
is used, the closer the estimated parameters are to the ones using the temporary
population. The strategy I shows a significant advantage over strategies II and III,
since the estimated parameters are the closest to the results using the temporary
population.

We firstly investigated why strategy I performed better than strategy II. As intro-
duced in Section 2.2.1.3, the most important component of Baum-Welch algorithm
is to calculate the expected transitions and emissions. From these expectations, we
are able to update the parameters for each iteration. Following the same notation
of Section 4.2, we denote 𝑥(𝑖) as the 𝑖th character in target sequence 𝑥, and 𝑦𝑘(𝑗)

as the 𝑗th character in source sequence 𝑦𝑘. For calculating the expected transitions
from hidden state 𝑠 to 𝑠′ (𝑠 and 𝑠′ could be the same or different), the quantity to
compute is Pr(𝜋(◇1, ◇2) = 𝑠, 𝜋(𝑖, 𝑗) = 𝑠′ | 𝑥, 𝑌 ), where 𝜋 refers to the hidden state.
Indices ◇1, ◇2 depend on the state of 𝑠′,

(◇1, ◇2) =

⎧⎪⎪⎨⎪⎪⎩
(𝑖− 1, 𝑗 − 1) 𝑠′ = 𝑀

(𝑖− 1, 𝑗) 𝑠′ = 𝐼

(𝑖, 𝑗 − 1) 𝑠′ = 𝐷

1We corrected errors in the source code of Zilversmit et al. (2013).
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Figure 4.15: Mean 𝛿 and 𝜖 (with 95% CIs) using three strategies for
varying subsample size. Dashed horizontal lines corresponds to the results
using the temporary population.

Pr(𝜋(◇1, ◇2) = 𝑠, 𝜋(𝑖, 𝑗) = 𝑠′ | 𝑥, 𝑌 ) =
Pr(𝜋(◇1, ◇2) = 𝑠, 𝜋(𝑖, 𝑗) = 𝑠′, 𝑥 | 𝑌 )

Pr(𝑥 | 𝑌 )

=

𝑛∑︀
𝑘=1

Pr(𝜋(◇1, ◇2) = 𝑠, 𝜋(𝑖, 𝑗) = 𝑠′, 𝑥 | 𝑌, 𝑐 = 𝑘) Pr(𝑐 = 𝑘)

𝑛∑︀
𝑘=1

Pr(𝑥 | 𝑌, 𝑐 = 𝑘) Pr(𝑐 = 𝑘)

=

𝑛∑︀
𝑘=1

Pr(𝜋(◇1, ◇2) = 𝑠, 𝜋(𝑖, 𝑗) = 𝑠′, 𝑥 | 𝑦𝑘)

Pr(𝑥 | 𝑦1) + Pr(𝑥 | 𝑦2) + ...+ Pr(𝑥 | 𝑦𝑛)

=

𝑛∑︀
𝑘=1

Pr(𝜋(◇1, ◇2) = 𝑠, 𝜋(𝑖, 𝑗) = 𝑠′ | 𝑥, 𝑦𝑘) Pr(𝑥 | 𝑦𝑘)

Pr(𝑥 | 𝑦1) + Pr(𝑥 | 𝑦2) + ...+ Pr(𝑥 | 𝑦𝑛)

Pr(𝜋(◇1, ◇2) = 𝑠, 𝜋(𝑖, 𝑗) = 𝑠′ | 𝑥, 𝑦𝑘) is the quantity for calculating expected tran-
sitions if we consider sequence pair as input of the algorithm. Likewise, for the
expected emissions,

Pr(𝜋(𝑖, 𝑗) = 𝑠 | 𝑥, 𝑌 ) =

𝑛∑︀
𝑘=1

Pr(𝜋(𝑖, 𝑗) = 𝑠 | 𝑥, 𝑦𝑘) Pr(𝑥 | 𝑦𝑘)

Pr(𝑥 | 𝑦1) + Pr(𝑥 | 𝑦2) + ...+ Pr(𝑥 | 𝑦𝑛)

No matter the expected transitions or emissions, strategy I is always a weighted
version of strategy II. The weight is Pr(𝑥 | 𝑦𝑘). Therefore, strategy I performed
better.
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Sampling sequences for each iteration in strategy III seems to use more data for
estimating parameters. However, it breaks the structure of the Baum-Welch algo-
rithm and cannot guarantee the likelihood to increase until converge. In fact, we
observed that the likelihood of the data increased at the first few iterations and
then kept fluctuating. This requires a well-designed stopping rule and beyond the
scope of this thesis. Last but not least, one might propose to sample pairs for each
algorithm iteration. With our current results, we expect this will not perform better
than strategy I and finally decide not to do so.

4.6.4.2 Sampling targets vs. sampling sources

Once we were determined to sample sequences, the naturally arising problem was
how many target sequences we needed to sample and how many source sequences to
sample. The above section kept the number of sampled target and source sequences
equal. We then studied another two scenarios, (1) only sample the target and fix
the source sequences and (2) only sample the source and fix the target sequences.
The results (Figure 4.16) suggested that sampling targets only made the estimated
parameters much closer to the reference results, compared with sampling sources
only or sampling targets and source (Figure 4.15). Therefore, we should sample a
small number of target sequences and a larger number of source sequences.
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Figure 4.16: Mean 𝛿 and 𝜖 (with 95% CIs) for varying subsample size.
Dashed horizontal lines corresponds to the results using the temporary population.
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4.6.4.3 The number of sampled target and source sequences

We next focused on the ratio between the number of sampled targets and the number
of sampled sources, while fixing their product which keeps the number of pairs fixed.
We increased the ratio from 0 to 1 and the product from 1,000 to 20,000. For each
ratio and product, we computed the number of target sequences and the number of
source sequences we needed to sample. In order to investigate the scenarios of small
ratios like 0.05 and 0.1, we increased our temporary population size from 100 to 200.
For each subsample size, we resampled 100 datasets from the temporary population
for estimating parameters. We show the estimated 𝛿, 𝜖 and 𝜌 in Figures 4.17, 4.18
and 4.19 separately.

Overall, increasing the product returned a more accurate estimation. This is reason-
able as more sequences were used for training the model. Importantly, we noticed
a growing trend for 𝛿 and 𝜌, indicating a higher ratio would lead to less accurate
results; meanwhile, a too-small ratio resulted in a large variance of each parameter.
We therefore set the ratio to 0.1. We note that this ratio is a user-chosen parame-
ter. The product of the number of sampled target and source sequences affects the
running time. Larger product results in longer computational time linearly. Based
on time availability, we set this product to 25,000.

Therefore, we finally sampled 50 target and 500 source sequences for estimating
parameters. Compared with the approximate time for estimating parameters from
over 10,000 targets and 30,000 sources in real data, our sampling strategy has saved
∼554 months for estimating 𝛿 and 𝜖, and ∼188 months for estimating 𝜌.

4.6.5 Lower proportion of recombinants in upsA DBL𝛼 tags

We found (from Figure 4.9) that the proportion of identified recombinants using the
sequences from the upsA group is smaller than the whole data. On the one hand, the
conserved upsA sequences could lead to a smaller number of recombinants detected,
as sequences are more similar to each other. This biology indicates a lower mutation
rate of upsA sequences. From our current simulation result (Figure 4.29), we indeed
found that a decreased mutation rate can be confounded with a decreased recom-
bination rate. On the other hand, the lower recombination rate of upsA sequences
than the non-upsA sequences would also lead to fewer recombinants (as shown in
Table 4.5).
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Figure 4.17: Mean 𝛿 (with 95% CIs) for varying ratio. The dashed hori-
zontal line represents the 𝛿 estimated from the temporary population.
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Figure 4.18: Mean 𝜖 (with 95% CIs) for varying ratio. The dashed hori-
zontal line represents the 𝜖 estimated from the temporary population.

To investigate the causes of this difference, we focused on the simulation with varying
mutation rate where the recombination rate is fixed. The simulation parameters are
shown in bold texts of Table 4.2. In order to get the difference in mutation rate
between sequences from upsA and whole data, we took the pairwise sequences’
distance as a proxy for mutation rate. This also helps us compare the mutation
rate between the real and simulated data. Here, we used the previously adopted [62]
FFP method [222] to calculate DBL𝛼 pairwise distance. We calculated the distances
using all upsA DBL𝛼 sequences and randomly sampled (for computational purposes)
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Figure 4.19: Mean 𝜌 (with 95% CIs) for varying ratio. The dashed hori-
zontal line represents the 𝜌 estimated from the temporary population.

20K sequences from whole group. For a fair comparison, we also calculated the FFP
distances using all simulated data with various mutation rates (from 0.1 to 0.5).

The results are shown in Figure 4.20. We found the mean similarities of real data
matched to the simulated data with a mutation rate between 0.1 and 0.2. Based on
Figure 4.29, this corresponds approximately to a difference of 0.002 for the estimated
recombination rate. Compared with the difference in estimated recombination rate
from our model (Table 4.5), this difference is small. In conclusion, the differences in
the proportion of identified recombinants from the upsA group and whole data are
not solely due to mutation rate but also recombination rate differences.

4.6.6 Supplementary figures and tables

Table 4.10: The proportion of jump distance from empirical datasets
captured by various radii.

Radius 10 Radius 15 Radius 20

Ghana data 99.5% 99.9% 99.9%
Global data [62] 98.2% 99.5% 99.8%
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Figure 4.20: Distributions of pair-wise distance using DBL𝛼 sequences
(from upsA group only and whole data) and simulated datasets.

Table 4.11: The average proportion of recombinants with a correctly
inferred number of breakpoints. The standard deviation is shown in the
bracket.

Zilversmit et al. [54] Radius 10 Radius 15 Radius 20

Equal-length sequences 55.0% (8.5%) 61.2% (7.6%) 61.2% (7.7%) 61.2% (7.7%)
Unequal-length sequences 54.9% (10.5%) 43.8% (10.0%) 49.5% (9.2%) 52.5% (9.2%)
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Figure 4.21: Histogram of the distance calculated from mosaic repre-
sentations using the Ghana pilot dataset. The distance is the difference
value between real and expected jump position for each recombination.
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Figure 4.22: Histogram of the distance calculated from mosaic rep-
resentations using the global dataset. The distance is the difference value
between real and expected jump position for each recombination.
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Figure 4.23: Source segment length from the mosaic representations us-
ing simulated unequal-length sequences with the JHMM and improved
JHMM.
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Figure 4.24: Source segment length from the mosaic representations
using simulated equal-length sequences with the JHMM and improved
JHMM.
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Figure 4.25: Mean (with 95% confidence intervals) of each estimated
parameter for varying proportions of recombinant sequences using the
JHMM and improved JHMM.
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Figure 4.26: Mean (with 95% confidence intervals) of each estimated
parameter for varying number of recombinations per recombinant se-
quence using the JHMM and improved JHMM.
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Figure 4.27: Mean (with 95% confidence intervals) of each estimated pa-
rameter for varying dataset size using the JHMM and improved JHMM.
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Figure 4.28: Mean (with 95% confidence intervals) of each estimated
parameter for varying sequence length using the JHMM and improved
JHMM.
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Figure 4.29: Mean (with 95% confidence intervals) of each estimated
parameter for varying mutation rate using the JHMM and improved
JHMM.
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Figure 4.30: Viterbi path comparison between the JHMM and im-
proved JHMM when varying average number of recombinations per
recombinant sequence.
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Figure 4.31: Viterbi path comparison between the JHMM and im-
proved JHMM when varying dataset size.
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Figure 4.32: Viterbi path comparison between the JHMM and im-
proved JHMM when varying sequence length.
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Figure 4.33: Viterbi path comparison between the JHMM and im-
proved JHMM when varying mutation rate.
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Figure 4.34: Viterbi path comparison between the JHMM and im-
proved JHMM when varying indel size.
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Figure 4.35: Time taken by each model for (a) Baum-Welch algorithm,
(b) estimating 𝜌, and (c) generating Viterbi paths when varying pro-
portions of recombinant sequence.
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Figure 4.36: Time taken by each model for (a) Baum-Welch algorithm,
(b) estimating 𝜌, and (c) generating Viterbi paths when varying average
number of recombinations per recombinant sequence.
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Figure 4.37: Time taken by each model for (a) Baum-Welch algorithm,
(b) estimating 𝜌, and (c) generating Viterbi paths when varying dataset
size.
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Figure 4.38: Time taken by each model for (a) Baum-Welch algorithm,
(b) estimating 𝜌, and (c) generating Viterbi paths when varying se-
quence length.
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Figure 4.39: Time taken by each model for (a) Baum-Welch algorithm,
(b) estimating 𝜌, and (c) generating Viterbi paths when varying muta-
tion rate.
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Figure 4.40: Time taken by each model for (a) Baum-Welch algorithm,
(b) estimating 𝜌, and (c) generating Viterbi paths when varying indel
rate.
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Figure 4.41: Time taken by each model for (a) Baum-Welch algorithm,
(b) estimating 𝜌, and (c) generating Viterbi paths when varying mean
indel size.
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Example (1)

target_seq725 DIGDIVRGRDMFKPNEEDAVQKGLREVFKKIKDDLNKNGITDYDGDPNYYKLREDWWKANRDQVWK AITCEAPKDANYFIGSGNKSKSFSNPKCGHNENKVLTNLDYVPQFLR

db_seq855 DIGDIVRGRDMFKPNEEDAVQKGLREVFKKIKDDLNKNGITDYDGDPNYYKLREDWWKANRDQVWK AITCDAPRDADYFKNVAGNIQQFTDIGKCGHHNNDGPLTNLDYVPQFLRWFDEWARVSLSGLARRI

db_seq1391 DIGDIVRGRDMFKPNSDDKVEKGLQVVFGKINNGLNESKINDYDHDGPHYYKLREAWWKVNRDQVWR AITCEAPKDANYFIGSGNKSKSFSNPKCGHNENKVLTNLDYVPQFLR

Example (2)

target_seq12678 DIGDIIRGKDLFLGGPSQEKKKLEENLKKIFEKIKKENKDLTTIPLEKIREYWWAIHRKEVWEALTCNAPPDAYYFVYKPNRVRTFTN PKCGHGEHEVLTNLDYVPQFVR

db_seq29984 DIGDIIRGKDLFLGGPSQEKKKLEENLKKIFEKIKKENKDLTTIPLEKIREYWWAIHRKEVWEALTCNAPPDAYYFVYKPNRVRTFTN HKCGHSNGGDPLTNLDYVPQFVR

db_seq9390 DIGDIVRGKDMFRSNDKVEKGLQVVFGKIKDDLKKQGIIDYDHDGPHYYKLREDWWTANRDQVWKALTCSADDSEDYFIQSEGAAKSFSN PKCGHGEHEVLTNLDYVPQFLR

Example (3)

target_seq1336 DIGDIVRGRDMFKPNTVDKVHEGLKVVFQKIYDDLKKKGINDYNDI SGNYYKLREAWWKANRDQVWKAITCKAPPKVDYFIKNSDGSRGFTSQGQCGRNEINVPTNLDYVPQFLR

db_seq645 DIGDIVRGRDMFKPNTVDKVHEGLKVVFQKIYDDLKKKGINDYNDI SGNYYKLREVWWKANRDQVWKAITCEAPQKVDYFRNISGNMKAFTSQGYCGRNERNVPTNLDYVPQFLR

db_seq12 DIGDIVKGKDMFKRTDNDEVWKGLRAVFGKIYKSLPSPAQNYYADDG SGNYYKLREAWWKANRDQVWKAITCKAPPKVDYFIKNSDGSRGFTSQGQCGRNEINVPTNLDYVPQFLR

Example (4)

target_seq18324 DIGDIVRGRDLYGGSKKEKEKEKRKQLDDNLKKIFG KIYDNLGKNKEDAKGHYGGDENYYQLREDWWNINR KKVWDAITCSAEGYQYFRPTCSKGQSGTQGKCHCIDETVPTYFDYVPQYLR

db_seq2425 DIGDIVRGRDLYGGSKKEKEKEKRKQLDDNLKKIFG KIYEKLDEKIKSKYNDAPYYYQLREDWWDVNRKKVWDAITCGAPDEGEYFRKTPCGGGKSSTPNKCRCDGDQVPTYFDYVPQFLR

db_seq7896 DIGDIIRGKDLYIGNRKEKEKEKLQNNLKYIFK KIYDNLGKNKEDAKGHYGGDENYYQLREDWWNANR ETVWKAITCSADTGNKYFRKTACAGTATYEKCRCRSYKVPTYFDYVPQYLR

db_seq567 DIGDIVRGKDLYLGNDKEKLILQEKLKEYFQIIYEKLDEKNGKAKDHYKDDGGNYFQLREDWWNANR KKVWDAITCSAEGYQYFRPTCSKGQSGTQGKCHCIDETVPTYFDYVPQYLR

Figure 4.42: Four example mosaic representations of improved JHMM
using real datasets. These four mosaic representations are arbitrarily selected
from the results using S1 (upsA)-S4 (upsA), S1-S4, S4 (upsA)-S5 (upsA) and S4-S5
datasets in order. In each example, the first row is the inferred recombinant, and
subsequent rows are the inferred parental sequences. The contributing segments
are highlighted by colors. When the amino acid differs from the parent and the
child, we underline it in the parent.
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Figure 4.43: Mean conservation level of recombinant and non-
recombinant DBL𝛼 types from different datasets. Conservation level is
the number of isolates that the DBL𝛼 type is present. The recombinants and
non-recombinants of each dataset were identified from the mosaic representations
separately.
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Figure 4.44: Frequency of DBL𝛼 types in the isolates of S4. The recombi-
nants and non-recombinants of S4 were identified from the mosaic representations
using S1-S4 data.
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Figure 4.45: Frequency of DBL𝛼 types in the isolates of S5. The recombi-
nants and non-recombinants of S5 were identified from the mosaic representations
using S4-S5 data.
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Figure 4.46: Proportions of frequent DBL𝛼 types in the recombinants
and non-recombinants among various datasets. Frequent DBL𝛼 types
were defined by thresholding the number of isolates. The recombinants and non-
recombinants of each dataset were identified from the mosaic representations sep-
arately.
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Classifying the malaria parasite var

genes into ups groups

5.1 Background

Plasmodium falciparum [27–29] is the deadliest human malaria parasite [5] and has
developed resistance to nearly all available anti-malaria drugs [37]. This is at least
in part because of its key virulence factor, the protein [223] called Plasmodium
falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 acts as both an
adhesion and antigen protein. It is expressed on the membrane surface of red blood
cells. P. falciparum-infected erythrocytes (IEs) could bind to other uninfected red
blood cells and cause the dysfunction of vital organs like the brain or placenta [224].
PfEMP1 is encoded by hyper-variable var genes, and each parasite genome contains
around 60 var genes. Mutually exclusive expression of these genes [225] aids the
parasites in evading the detection of human immune system [226] and may lead to
waves of parasitemia. Therefore, studying the var genes has always been of major
interest especially for malariologists.

Based on the similarity of upstream sequences (ups) and chromosomal positions, var
genes are classified into four major groups (upsA, upsB, upsC and upsD) [45, 117,
118] and an upsE group consisting of Var2CSA gene (distantly related to other var
genes) with unique domain structure [50]. UpsD has been grouped into upsA later
due to the high similarity observed in a phylogenetic study [61].
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Ups groups are strongly associated with various chromosome locations, transcription
orientations [118], and importantly, disease severities. Specifically, upsA var genes
are found in subtelomeric regions and transcribed towards the telomere. They are
preferentially involved in the pathogenesis of severe and cerebral malaria in chil-
dren [227–229]. UpsB var genes are located in subtelomeric or central chromosome
regions but transcribed in the opposite orientation to upsA var genes. A large pro-
portion of upsB transcripts are associated with clinically mild (symptomatic) and
severe malaria cases [230]. All upsC var genes are in central chromosomal areas, and
predominant in African children with asymptomatic malaria infections [230]. Clas-
sifying the var genes to ups groups is thus crucial for the prevention and diagnosis
of malaria.

To develop a method for classifying var genes into ups groups, we focus on the
conserved region in DBL𝛼 domain of the var gene called DBL𝛼 tag. Each DBL𝛼
tag is predominantly found in a unique var gene [231]. While there are limited ups
sequences which have been published [44], a large number of DBL𝛼 tags are publicly
available [46, 71, 74, 84, 85] (even from a global scale [44, 62]).

In the past two decades, the DBL𝛼 domain has been a popular marker for population
genetic studies of var genes. Nearly all var genes (except var2CSA [49–51]) encode
a DBL𝛼 domain, moreover, this domain has been found to be immunogenic [67]
and a potential target for vaccination [68]. Rask et al. [46] retrieved var genes from
seven genomes and classified the DBL𝛼 domain of var genes into DBL𝛼0, DBL𝛼1
and DBL𝛼2 three groups. Based on the tree analysis, sequences from DBL𝛼0 were
further grouped into 24 subclasses (DBL𝛼0.1–24) and sequences from DBL𝛼1 were
grouped into 8 subclasses (DBL𝛼1.1–8). Taken altogether, Rask et al. [46] identified
33 DBL𝛼 subclasses.

The only existing method for classifying ups groups was developed by Ruybal-
Pesántez et al. [74]. They classified each DBL𝛼 tag to its most probable DBL𝛼
subclass using the reference from [46]. If a sequence was assigned to DBL𝛼1, the
method [74] classified it to upsA group; otherwise, it was assigned to DBL𝛼0 or
DBL𝛼2, then upsB/C group was classified. The limitation of this approach is that
it can only classify tags into two categories, upsA and non-upsA. Their results do
not show a clear separation of upsB vs upsC based on DBL𝛼 subclasses.

In this chapter, we develop two algorithms to classify each DBL𝛼 tag into upsA,
upsB and upsC three groups, with the help of the most up-to-date and the largest
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reference database from Otto et al. [44]. Our first algorithm searches each query
DBL𝛼 tag against the reference database with known ups groups using BLASTP
[220]. Each query tag is then classified (or assigned) to the ups group of its closest
reference tag. However, one of its drawbacks is that it classifies the tag into an ups
group explicitly. To overcome this, we propose another algorithm which uses the
profile hidden Markov model (HMM) [156]. This approach provides probabilities of
membership to three ups groups, so it helps making informed decisions of inference
or setting a threshold.

We show our two algorithms perform well through cross-validation. We also compare
these two with the existing method [74]. Results indicate that the overall accuracy
is similar between our two algorithms, and they are more accurate than the existing
method. Moreover, for our profile HMM-based method, setting a threshold on the
inferred probabilities further improves the accuracy but at the cost of less classified
tags. In the following, we introduce our algorithms.

5.2 Methods

We firstly use BLASTP to search each DBL𝛼 tag to the reference database of DBL𝛼
tags (with known ups groups). We classify each tag to the ups group of its closest
reference tag. This BLASTP-based method provides an explicit classification for
each query DBL𝛼 tag. Since this method is straightforward, we introduce our profile
HMM-based method as below.

We propose a probabilistic method to classify the var genes into ups groups using
the DBL𝛼 tags. It takes as input a reference database of DBL𝛼 tags with known
ups groups and a set of DBL𝛼 tags to be classified, and outputs the probabilities of
membership to all three ups groups per tag. Compared with the existing method,
the main improvements in our method are (1) the ability to classify a tag to all three
ups groups (upsA, upsB and upsC) rather than traditional either upsA or non-upsA,
(2) the inferred probabilities to three ups groups.

The method consists of the following three steps:

1. Each DBL𝛼 tag belongs to one of 33 DBL𝛼 subclasses and one of 3 ups groups.
We divide the reference DBL𝛼 tags into categories, where tags in each category
have the same subclass and ups group.
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2. We fit a profile hidden Markov model (HMM) [156] as a representation of the
tags in each category. We then calculate the likelihood of a new tag (to be
classified) for each category conditional on the estimated HMM parameters.

3. With Bayes’ theorem, we infer the posterior probabilities, i.e., the new tag’s
assignment probabilities to the three ups groups.

We discuss each step in detail in the following sections.

5.2.1 Dividing reference database into categories

Since each reference tag belongs to one DBL𝛼 subclass and one ups group, we divide
all reference tags into categories, where each category refers to a set of reference
tags belonging to one combination of the 33 DBL𝛼 subclasses and 3 ups groups
(Figure 5.1).

upsA

upsB

upsC

DBLa0.1 DBLa0.2 DBLa2

Figure 5.1: An overview of dividing reference tags into categories. From
an input set of reference tags (represented by colored horizontal lines), we divide
them into categories, where tags in each category belong to both one of the DBL𝛼
subclasses and one of the ups groups.
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5.2.2 Fitting a profile HMM for each category

The profile hidden Markov model (profile HMM) [156] is a hidden Markov model
well suited for modelling multiple sequences. It takes as input of a multiple align-
ment of a set of sequences belonging to a sequence family (with similar functions),
and represents the consensus sequence in this family [148] instead of any particular
sequence in it. This model has been widely used for measuring how likely a sequence
is generated from a sequence family and become very popular in current molecular
biology [232–239]. In this step, we fit the hidden Markov model for each category of
reference database. Its rationale is that, using the existing forward algorithm [148]
of HMM, we can calculate the likelihood of a new sequence to be classified to any
category. These likelihoods are used for the next step.

The profile HMM provides the position-specific information of the input alignment.
Sequences in a family are subject to variation in the symbols (amino acid for protein
sequences; nucleotide for DNA sequences) at each position (column) of alignment
and gaps within the alignment. To model this, the profile HMM uses a probabilis-
tic way to describe which symbols are likely to be observed and how frequently
insertions/deletions occur at each column of the sequence alignment.

Specifically, the profile HMM uses a repetitive structure of hidden states, see Fig-
ure 5.2 for an example architecture. For each consensus column (where most se-
quences have symbols) of the alignment, we have match (𝑀), insert (𝐼) and delete
(𝐷) three hidden states. In a length 𝐿 profile HMM,

• the 𝑙th match state 𝑀𝑙 emits a symbol from the 𝑙th position’s emission prob-
ability distribution over all symbols;

• the 𝑙th insert state 𝐼𝑙 emits a symbol using this position’s background emission
probability distribution;

• the 𝑙th delete state 𝐷𝑙 emits nothing, it represents a symbol at this position
is skipped.

These hidden states are connected by transitions. In practice, the transition between
the insert and delete states are usually prohibited [240], as shown in Figure 5.2. The
possible transition from a hidden state to another is described by the transition
probabilities of that position.
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Figure 5.2: An example structure of profile HMM. This figure is a minor
modification of Figure 5.2 from [148]. This length 3 profile HMM starts from the
begin (B) and terminates at end (E) state. Inside the model, we denote match
state (𝑀), insert state (𝐼) and delete state (𝐷) as squares, diamonds and circles
separately. Arrows represent the possible transitions among hidden states.

Building a profile HMM would require a suitable model length 𝐿 and all the prob-
abilities (emission probabilities from each match and insert state; transition proba-
bilities). The procedure of training the profile HMM is to maximize the likelihood
of the input data given all these parameters. We briefly introduce how we estimated
parameters below, see [148] for an in-depth discussion.

The key to determining the model length 𝐿 is to detect which alignment columns
refer to 𝑀 state, since the number of match states is defined as 𝐿. A straightforward
way is introduced in Durbin et al. [148], i.e., columns where the alignment contains
less than half gaps are assigned to match states, and the remaining columns are
inserts. Regarding the probabilities, we took the maximum likelihood estimation
of parameters by counting the number of times of each state transition or symbol
emission and computed the relative empirical frequencies. In addition, due to the
absence of some transitions and emissions in the alignment, we added the number 1
as the pseudocounts to the actual counts to avoid zero probabilities.

Here Clustal Omega v1.2.4 [241, 242] was used for aligning reference DBL𝛼 tags. To
build a profile HMM for each category of the reference database, we next ran the
hmmbuild command in HMMER v3.2.1 [240] with default settings. We finally used
a custom script to implement the forward algorithm, and computed the likelihood
of each tag to be classified under the profile HMM parameters for each category.
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5.2.3 Calculating the assignment probabilities of each sequence

In this step, we calculate the posterior (assignment) distribution of ups groups for a
given DBL𝛼 tag. Consider a new DBL𝛼 tag 𝑋 to be classified, and let 𝐺𝑝 (𝑝 = 1, 2, 3)
denote one of 3 ups groups, 𝐷𝑞 (𝑞 = 1, 2, ..., 33) denote one of 33 DBL𝛼 subclasses.
With Bayes’ theorem, we estimate the posterior probability of DBL𝛼 tag 𝑋 to the
ups group 𝐺𝑝:

Pr(𝐺𝑝 | 𝑋) =

∑︀33
𝑞=1 Pr(𝑋 | 𝐺𝑝, 𝐷𝑞) Pr(𝐺𝑝, 𝐷𝑞)

Pr(𝑋)

∝
33∑︁
𝑞=1

Pr(𝑋 | 𝐺𝑝, 𝐷𝑞)𝑃𝑟(𝐷𝑞) Pr(𝐺𝑝 | 𝐷𝑞)

(5.1)

Since the summation of posterior probabilities to three ups groups is 1, we only
need to compute the Pr(𝑋 | 𝐺𝑝, 𝐷𝑞), Pr(𝐷𝑞) and Pr(𝐺𝑝 | 𝐷𝑞). Pr(𝑋 | 𝐺𝑝, 𝐷𝑞) is the
likelihood of 𝑋 given the profile HMM of category 𝐺𝑝, 𝐷𝑞, which we have calculated
in the previous step; for Pr(𝐷𝑞) and Pr(𝐺𝑝 | 𝐷𝑞), we use empirical distributions of
reference database to compute this prior.

There are two ways to classify sequences using these probabilities. A direct method
is classifying each sequence to the ups group with the highest posterior probability.
We get the classified ups group for each sequence. An alternative method is to
establish assignment probability thresholds. A sequence’s ups group is annotated as
‘known’ if its maximum probability is greater than a specified threshold; otherwise,
its ups group is annotated as ‘unknown’. In this way, we focus on the sequences
with more confident classification results.

5.2.4 Measuring algorithm accuracy

To evaluate the accuracy of our BLASTP-based and profile HMM-based algorithms,
we adopted leave-one-out cross-validation on the reference database. Our reference
database consists of 846 DBL𝛼 tags with known ups group for each tag (148 upsA,
502 upsB and 196 upsC). See Supplementary Section 5.5.1 for details about this
reference database. We used two standard statistical measures to assess the accu-
racy of methods, sensitivity and precision. Sensitivity is the proportion of correctly
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predicted tags, and precision is the proportion of correctly classified tags among
predictions.

We first classified each tag to the ups group with the highest posterior probability.
By comparing the predicted and actual results, we obtained a confusion matrix. We
presented the results of accuracy measures using this matrix. We also established
the probability thresholds, and demonstrated how various threshold values affected
the accuracy of our profile HMM-based method.

Comparison with Ruybal-Pesántez’s method For comparing our two algo-
rithms with the previous method [74], we converted the prediction result into a prob-
ability vector for each sequence to have a uniform output format across methods.
For instance, if Ruybal-Pesántez’s method [74] classified a sequence as non-upsA,
we set the output vector as (0, 0.5, 0.5), where the three values represent the prob-
abilities of belonging to the upsA, upsB, and upsC groups, in that order. Likewise,
if the BLASTP-based method classified this sequence as upsC, we used the vector
(0, 0, 1).

To evaluate the accuracy of classifiers with the above output, we used measures of
overall accuracy oa, the 𝜅 and root mean square error (RMSE ). Larger oa or 𝜅 values
and smaller RMSE indicate greater accuracy. All these assessment indices were
calculated from the extended traditional confusion matrix called sub-pixel confusion
matrix (SCM) [243]. See Supplementary Section 5.5.2 for details about how to
calculate the SCM and related equations of indices.

5.3 Results

5.3.1 Classifying the tags with the highest probability

We show the confusion matrix of BLASTP-based and profile HMM-based methods
in Table 5.1 and 5.2, and the accuracy measures of these methods are presented
in Table 5.3. Overall, our methods perform very well with an accuracy (weighted
mean in the table) of 76.7% for the BLASTP-based method and 75.2% for the profile
HMM-based method. Furthermore, both two methods show that the upsA group
has the highest sensitivity, followed by the upsB or upsC group; the precision is over
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80% in the upsA and upsB groups and slightly lower in the upsC group. In general,
the accuracy of our two methods is similar.

Table 5.1: Confusion matrix using BLASTP-based method. The rows
represent the predicted ups groups, and columns represent the real ups groups.

Real
UpsA UpsB UpsC Total

P
re

di
ct

ed UpsA 145 3 0 148
UpsB 3 382 74 459
UpsC 0 117 122 239
Total 148 502 196 846

Table 5.2: Confusion matrix using profile HMM-based method. The
rows represent the predicted ups groups, and columns represent the real ups
groups.

Real
UpsA UpsB UpsC Total

P
re

di
ct

ed UpsA 145 1 1 147
UpsB 3 350 54 407
UpsC 0 151 141 292
Total 148 502 196 846

Table 5.3: Accuracy of BLASTP-based and profile HMM-based meth-
ods. The weighted mean is the mean weighted by the real ups group sizes for
sensitivity and by the predicted ups group sizes for precision.

Method Measure UpsA UpsB UpsC Weighted mean

BLASTP-based Sensitivity 98.0% 76.1% 62.2% 76.7%
Precision 98.0% 83.2% 51.0% 76.7%

Profile HMM-based Sensitivity 98.0% 69.7% 71.9% 75.2%
Precision 98.6% 86.0% 48.3% 75.2%

5.3.2 Setting a threshold on the probabilities

We found the distribution of highest posterior probabilities of tags is highly left-
skewed and most values are distributed in [0.95, 1] (Supplementary Figure 5.5). To
study how our method’s accuracy varies with threshold, we vary the threshold to
1 − exp(−𝑥), the minimum, increment and maximum value of 𝑥 is 0, 0.5 and 25.
For each ups group, we presented the proportion of classified tags and calculated
the sensitivity and precision using different threshold values.
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As anticipated, the proportion of overall classified DBL𝛼 tags decreased with in-
creasing thresholds (Figure 5.3). The upsA group experienced the slowest decline
in the proportion of classified tags, while the upsB group experienced the greatest
decline. This indicated that setting a too-high threshold would result in a relatively
small number of classified tags, particularly non-upsA DBL𝛼 tags.
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Figure 5.3: Proportion of classified DBL𝛼 tags with threshold.

We then calculated the sensitivity and precision for three ups groups at each thresh-
old value (Figure 5.4). The sensitivity and precision were both the highest (over
97.0%) for the upsA group at nearly every threshold. This suggested that it is easier
to distinguish upsA and non-upsA groups than upsA, upsB, upsC three groups. In
the upsC group, sensitivity and specificity increased steadily with minor fluctua-
tions before reaching the peak (100%). However, setting a higher threshold cannot
make the detection of each ups group more accurate. Notably, the upsB group
showed an initial increase in both accuracy measures until the threshold was around
1− exp(−8), after which there was a rapid decline.

In conclusion, setting a threshold on inferred probabilities would affect the number
of tags classified and the accuracy of each ups group. Selecting a too-high threshold
is advantageous for the upsA and upsC groups’ accuracy, but not for upsB and the
total number of classified tags. Conversely, setting a too-low threshold would reduce
the accuracy of upsB and upsC groups, particularly the precision of upsC, while
increasing the number of classified upsB and upsC tags. An example threshold we
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Figure 5.4: Accuracy of profile HMM-based method with threshold.
Note that the precision of upsB group is not computed when threshold is larger
than 1− exp(−22.5), this is due to no classified sequences since then.

recommend is 1 − exp(−8), where the upsB group accuracy is nearly the highest
and the upsC group accuracy is over 75.0%. This results in 37.5% of classified
tags (92.6%, 22.5%, 33.7% of classified tags for upsA, B and C group separately).
Supplementary Table 5.9 shows the number of classified tags in each ups group with
this threshold. Moreover, this study suggests that choosing an appropriate threshold
depends on the user’s preferences.

Finally, in terms of comparing our methods with the existing method, Table 5.4
displays the results for each method employing our three accuracy measures (oa, 𝜅,
RMSE ). The results suggest a similar accuracy between our BLASTP-based and pro-
file HMM-based method, and this supports the discovery in Table 5.3 of Section 5.3.1.
Moreover, the oa, 𝜅 of our methods are both higher than Ruybal-Pesántez’s method.

To further illustrate the performance of our profile HMM-based method with thresh-
old, we used our previously recommended threshold, 1 − exp(−8) and calculated
each accuracy measure. We found with a threshold, our profile HMM-based method
exhibited the highest oa, 𝜅 and the lowest RMSE than any other method, indicat-
ing the best performance in classifying tags, especially for distinguishing upsB and
upsC. In the meantime, we stress that the consequence of setting a threshold is that
this method could not classify all tags, and the corresponding accuracy values were
computed using a small set of tags.
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Table 5.4: Accuracy measures of each method. We calculated the accuracy
values of each method using the output of all tags. Once we set a threshold for the
profile HMM-based method, we calculated the accuracy using the classified tags
only. The best performance among methods for each measure is in bold.

Method Oa 𝜅 RMSE

Ruybal-Pesántez’s method 0.582 0.335 0.375

BLASTP-based 0.767 0.600 0.394

Profile HMM-based 0.743 0.576 0.377

Profile HMM-based method with threshold 0.899 0.843 0.259

Instead of DBL𝛼 tags, we also studied the DBL𝛼 types. We were interested in
whether the frequent DBL𝛼 types have a higher classification accuracy than the
infrequent DBL𝛼 types. Here we did not detect any significant difference (see Sup-
plementary section 5.5.3).

5.4 Discussion

In this chapter, we have developed two algorithms (BLASTP-based and profile
HMM-based) for classifying DBL𝛼 tags into ups groups. We demonstrate that
both methods can distinguish between upsB and upsC group tags, while the ex-
isting method cannot. Our cross-validation results indicate that the accuracy of
these two methods is similar across a series of statistical measures, and each method
has a considerable classification accuracy for every ups group. Moreover, compared
with the BLASTP-based method, our profile HMM-based method even quantifies
group membership probability. These are the primary improvements over the cur-
rent method.

While the performances of our two methods are similar, setting a threshold on the
inferred probabilities using our profile HMM-based method significantly increases
the accuracy. However, it reduces the number of classified tags. The crucial caveat
for users is that there is a trade-off between the number of tags classified with a
threshold and the resulting classification accuracy.

We grouped the tags into categories based on all DBL𝛼 subclasses and three ups
groups. To determine whether we over-divided the reference tags, we clustered the
DBL𝛼 subclasses to reduce the number of categories. However, it turned out that
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there was no further classification accuracy improvement. Furthermore, one can
either group reference tags by the subclass alone or ups group alone, but we do not
use them since this way makes extra assumptions on data. For instance, if we divide
the reference database into three ups groups regardless of tags’ DBL𝛼 subclass, this
implicitly assumes the distribution of DBL𝛼 tags does not depend on the DBL𝛼
subclass if the ups group is known, and the ups group solely is fully capable of
deciding tag’s profile composition (used for calculating the likelihood). By contrast,
there is no such assumption in our approach. Consequently, we maintain the current
data division scheme.

Although our reference database has been the largest so far, there are still some
issues. Our reference tags come from Plasmodium falciparum genomes of 18 isolates,
and these genomes contain over 1,000 var genes. Compared with the large number
of var genes from natural parasite populations introduced at Section 3.3.2 and 4.4,
whether the current reference database is representative or not is still an unsolved
issue. After all, we don’t have the ups group information for these datasets and thus
they can not be added into the reference database of our method. In addition, we
notice that there is no tag in several categories (Figure 5.1), and it is undetermined
if this happens by chance. Therefore, higher sampling coverage is required. Lastly,
the number of tags across the three ups groups is different. It is thus useful to
explore whether more balanced data helps increase the accuracy of our methods.

For fitting a profile HMM, we aligned the reference tags for each category. Note
that the reference database consists of DBL𝛼 tags of var genes. In general, the
extreme diversity of DBL𝛼 tags affects the alignment quality; also there are always
lots of available tags (over 10,000). As a consequence, DBL𝛼 tags are not suitable
to align. However, the average number of DBL𝛼 tags per category in our reference
is less than ten, and we aligned them with Clustal as the existing method [74] did
for small datasets. Here we think the quality of the resulting alignment is unclear,
and using more advanced alignment tools (like PRANK [244] and AQUA [245]) is
a future direction. Moreover, fitting a profile HMM for diverse sequences like var
genes is the subject of future work.

Regarding our BLASTP-based algorithm, we used the best BLAST hit to assign the
ups group. However, this might be distorted by tags that just happen to be close to
each other. A potential solution is to use a set of top BLAST hits. The subsequent
problems are how to determine the number of top hits and how to extract the
information from top hits. Existing studies have selected top hits by determining a
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percent identity [246] or bit-score [247] threshold and chosen the one with the largest
Max Score [246] or consensus [248, 249] from top hits. We believe this idea is doable
and itself is a good research project.

Finally, although the application of our methods goes beyond the scope of this
chapter’s work, there are numerous research directions.

1. After applying our methods to the longitudinal data (e.g. date introduced in
Section 1.2) or the global data from [62], we can explore whether the propor-
tions of tags belonging to each ups group change with time or locations.

2. As mentioned in the Background section, ups groups are associated with vari-
ous disease severities. Therefore, we hypothesise that ups groups’ proportions
differ among symptomatic and asymptomatic malaria cases. Our methods
could quantify this hypothesis statistically.

3. We can compare the biological functions among three ups groups. For instance,
we can study whether the DBL𝛼 types of the upsA group occur more frequently
in isolates than the upsC group, as we have found that the proportion of
recombinants in the upsA group is always lower than the proportion in the
upsC group and recombinants are less conserved than the non-recombinants.

4. In the past, we had limited information on ups sequences, but now we have
over 1,000 ups sequences. Exploring this data is useful, such as the phyloge-
netic analysis, recombinant detection using our methods and the relationship
between ups and DBL𝛼 tag.

Source code and data availability

The reference database and scripts of proposed algorithms are available from the
Github repository (https://github.com/qianfeng2/cUps) or Zenodo (https://ze
nodo.org/records/13729367).
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5.5 Supplementary materials

5.5.1 Reference database

Our biologist collaborators Tan et al. [250] preprocessed the reference DBL𝛼 tags.
Here we briefly introduce their pipeline.

Tan et al. [250] firstly assembled 18 P. falciparum isolate genomes from Otto et al.
[44] and NCBI, and then extracted the 2kb upstream promoter sequences from the
whole var genes. This resulted in 1,092 var genes with full ups sequences in total.
Table 5.5 displays the source of isolates and the number of var genes per genome.
To our knowledge, they form the largest var gene database with known ups group
information in the literature. In order to infer the ups group of each var gene, Tan
et al. [250] employed the methods from Rask et al. [46] and constructed phylogenetic
trees using two different approaches — Markov clustering (MCL) [251, 252] and
neighbor joining clustering (NJ). This yielded two trees which were then compared
to find the congruent clades. Each ups sequence has two inferred ups groups. One
is from MCL, and another is from NJ.

We next conducted a series of filtering steps before formulating our reference database.
First, we excluded the var genes without the DBL𝛼 tag or the genes from the mixed
infections isolates (ML01 and TG01 in Table 5.5). Next, we removed the tags whose
inferred ups groups are inconsistent by MCL and NJ methods. These steps finally
resulted in 846 reference tags, with upsB having the highest number of tags and
upsA the lowest (17.5%, 59.3% and 23.2% from A, B and C, respectively).

5.5.2 Computation of accuracy measures

Significant efforts have been made in the literature [243, 253–256] to evaluate the
accuracy of classifiers with a probability vector as the output. The traditional con-
fusion matrix was extended to the sub-pixel confusion matrix (SCM) [243], initially
used to describe the partial membership of a raster map pixel to different classes.
The SCM is similar to the confusion matrix. Each pixel has a SCM, averaging the
SCM across all pixels results in a final SCM. Accuracy measures are derived from
the final SCM.
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Table 5.5: Details of reference database. Genomes of RAJ116, IGH-CR14
were from NCBI. The remaining genomes were from Otto et al. [44] using Pacific
Biosciences SMRT technology.

Isolate Source Number of var genes

3D7 lab 61

7G8 lab 41

Dd2 lab 44

GB4 lab 64

HB3 lab 42

IT lab 55

RAJ116 lab 48

IGH-CR14 lab 54

KH01 Cambodia 58

KH02 Cambodia 52

CD01 Congo 63

GA01 Gabon 57

GN01 Guinea 75

KE01 Kenya 49

SN01 Senegal 66

SD01 Sudan 49

ML01 Mali 85

TG01 Togo 129

For the 𝑛th tag to be classified in our study, we denote 𝑟𝑛𝑖 (𝑖 ∈ {1, 2, 3}) to indicate
whether it belongs to 𝑖th ups group (yes for 1 or no for 0), 𝑐𝑛𝑗 (𝑗 ∈ {1, 2, 3}) as
the inferred probability of belonging to 𝑗th ups group. Table 5.6 depicts the SCM
structure of this tag. 𝑝𝑛𝑖𝑗 of this table is the entry at the 𝑖th row and 𝑗th column.
Constructing the SCM for each tag requires us to calculate the 𝑝𝑛𝑖𝑗 given the real
and predicted vectors. Here we adopted the most practical operator—composite
operator [243, 255]. Specifically, as shown in Equation 5.2, for the diagonal elements
of SCM, we used the minimum rule to demonstrate the agreement of each ups group;
for off-diagonal elements, we calculated the disagreement utilizing the distribution
of 𝑟𝑛𝑗 − 𝑝𝑛𝑗𝑗 (called omission proportion) across three groups.
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Table 5.6: Structure of the sub-pixel confusion matrix of 𝑛th tag.

Real
UpsA UpsB UpsC Total

P
re

di
ct

ed UpsA 𝑝𝑛11 𝑝𝑛12 𝑝𝑛13 𝑐𝑛1
UpsB 𝑝𝑛21 𝑝𝑛22 𝑝𝑛23 𝑐𝑛2
UpsC 𝑝𝑛31 𝑝𝑛32 𝑝𝑛33 𝑐𝑛3
Total 𝑟𝑛1 𝑟𝑛2 𝑟𝑛3 1

𝑝𝑛𝑖𝑗 =

⎧⎨⎩min(𝑟𝑛𝑖, 𝑐𝑛𝑗) 𝑖 = 𝑗

(𝑐𝑛𝑖−𝑝𝑛𝑖𝑖)(𝑟𝑛𝑗−𝑝𝑛𝑗𝑗)∑︀𝑘
𝑗=1(𝑟𝑛𝑗−𝑝𝑛𝑗𝑗)

𝑖 ̸= 𝑗
(5.2)

After computing the SCM for each tag, the final SCM is the average of the SCMs for
all tags; see Table 5.7 for its final structure. In this table, 𝑝𝑖𝑗 =

∑︀𝑁
𝑛=1 𝑝𝑛𝑖𝑗/𝑁 , where

𝑁 is the overall number of tags. 𝑟𝑗 =
∑︀3

𝑖=1 𝑝𝑖𝑗 represents if it belongs to 𝑗th ups
group, and 𝑐𝑖 =

∑︀3
𝑗=1 𝑝𝑖𝑗 is the inferred probability of belonging to 𝑖th ups group.

Table 5.7: Final structure of the sub-pixel confusion matrix of a classi-
fier.

Real
UpsA UpsB UpsC Total

P
re

di
ct

ed UpsA 𝑝11 𝑝12 𝑝13 𝑐1
UpsB 𝑝21 𝑝22 𝑝23 𝑐2
UpsC 𝑝31 𝑝32 𝑝33 𝑐3
Total 𝑟1 𝑟2 𝑟3 1

The two most popular assessment indices [255] are proposed using the final SCM:
overall accuracy (oa, which differs from the accuracy previously calculated from
the ordinary confusion matrix) and the kappa coefficient (𝜅). oa is the sum of the

diagonal elements of the SCM (
3∑︀

𝑗=1

𝑝𝑗𝑗), which represents the overall proportion of

agreement for all three ups groups; 𝜅 is the proportion of agreement after the chance
agreement is removed (see Equation 5.3) [257]. The range of oa and 𝜅 are both [0, 1].
Larger oa and 𝜅 values indicate greater accuracy.

𝜅 =

3∑︀
𝑗=1

𝑝𝑗𝑗 −
3∑︀

𝑗=1

(𝑟𝑗 × 𝑐𝑗)

1−
3∑︀

𝑗=1

(𝑟𝑗 × 𝑐𝑗)

(5.3)
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Another frequently used accuracy measure is root mean square error (RMSE ). This
combines the difference between each tag’s classification and the true ups group into
a single value (Equation 5.4). A smaller RMSE denotes higher accuracy.

RMSE =

⎯⎸⎸⎸⎷ 𝑁∑︀
𝑛=1

3∑︀
𝑗=1

(𝑐𝑛𝑗 − 𝑟𝑛𝑗)2

3𝑁
(5.4)

5.5.3 Comparison between frequent and infrequent DBL𝛼 types

We followed with standard pipeline [62, 74] and firstly clustered all reference DBL𝛼
tags with 96% sequence similarity cutoff. This resulted in 747 DBL𝛼 types in total
(128 upsA, 453 upsB and 166 upsC), of which 709 types were seen in only an isolate,
while remaining types were found in more than two isolates. Here we defined the
709 types as infrequent DBL𝛼 types, the remaining 38 types as frequent ones.

We conducted leave-one-out cross-validation using these 747 DBL𝛼 types. Using the
highest posterior probability, we calculated the sensitivity and precision; using the
probability vectors, we also calculated the oa, 𝜅 and RMSE. The results (Table 5.8)
indicate that the accuracy between these two groups is similar. We also tested if
the RMSE was statistically different, and it turned out there was no significant
difference here (p = 0.998 from a two-sample Wilcoxon test).

Table 5.8: Accuracy measures for frequent and infrequent DBL𝛼 types.
Sensitivity and precision are the weighted mean of each ups group.

Group Sensitivity Precision Oa 𝜅 RMSE

Frequent DBL𝛼 types 65.8% 65.8% 0.672 0.497 0.423

Infrequent DBL𝛼 types 70.9% 70.9% 0.700 0.498 0.407

5.5.4 Supplementary figures and tables

168



Chapter 5

0

5

10

0.5 0.6 0.7 0.8 0.9 1.0

Highest posterior probability

D
en

si
ty

Figure 5.5: The density distribution of the highest posterior probability.
These highest posterior probabilities were obtained from cross validations using the
profile HMM-based method.

Table 5.9: Number of classified tags in each ups group with the thresh-
old 1− exp(−8). The total number of tags in each ups group is in bracket.

Number of classified tags Proportion of classified tags

UpsA 138 (148) 92.6%

UpsB 113 (502) 22.5%

UpsC 66 (196) 33.7%

Total 317 (846) 37.5%
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Conclusions and future work

The antigen PfEMP1 plays a central role in the pathogenicity and immune eva-
sion of the deadliest malaria parasite — Plasmodium falciparum. It is encoded by
hyper-variable and rapidly evolving var genes. A key driver in the diversification of
the var genes is recombination, and detecting recombinant var genes has been of
great interest to scientists with implications for malaria interventions. Although the
architecture of var genes is highly variable, almost all var genes (except var2CSA)
encode the DBL𝛼 domain, which has been found to be immunogenic. In this thesis,
we focus on the extensively studied DBL𝛼 tag in the DBL𝛼 domain and aim to un-
derstand the evolutionary processes behind DBL𝛼 evolution. We specifically focus
on detecting the recombination and recombinant tags. There are various methods
for recombination and recombinant identification, such as distance-based, phyloge-
netic, substitution distribution-based and compatibility methods. In the context of
var genes, there are also a few methods (like BLAST used in Otto et al. [59], ‘clone
tree’ used in Claessens et al. [42]) for identifying var recombination. However, no
suitable method for detecting recombination and recombinants from a large number
of unaligned sequences like DBL𝛼 exists. This is the main driving force of my work.

6.1 Summary and final remarks

Zilversmit et al. [54] conducted the first systematic attempt to quantify the recombi-
nation of DBL𝛼 domains. They hypothesized that each sequence is reconstructed by
a mosaic of source sequences and propose a jumping hidden Markov model to map
each sequence to its nearest source sequences. The JHMM was then used to detect
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the recombination of DBL𝛼 domains from three isolates of different Plasmodium
species. The ancient evolution of the var gene family was thus uncovered. In Ap-
pendix A, we apply this JHMM to a large dataset of DBL𝛼 tags from a Ghana pilot
study. In addition, the JHMM has been applied to a dataset of DBL𝛼 tags collected
from ten countries worldwide [62]. We analyze the recombination patterns using the
mosaic representations from these two datasets and then conduct extensive compar-
isons. We find consistent results regardless of the dataset employed, such as com-
parable HMM parameters, analogous distributions of recombination breakpoints,
and similarly short horizontal jump distances. Moreover, the uneven distribution of
breakpoints is similar to the finding in Zilversmit et al. [54].

This work is the first time that the recombination patterns of DBL𝛼 tags are system-
atically analyzed and uncovered from large datasets (over 100,000 tags). Therefore,
these findings offer us a fundamental understanding of var gene DBL𝛼 tags. Biolog-
ical realism facilitates more related discoveries and our subsequent methodological
advancement. For instance, the three peaks in the breakpoint distributions motivate
us to explore further, leading to a new finding related to the positions of frequent
homology blocks (in Chapter 3). The short horizontal jumps motivate us to develop
an improved JHMM described in Chapter 4.

6.1.1 Detecting recombinants from unaligned sequences

Utilizing information extracted from the mosaic representations, we introduce a
statistical method for detecting recent recombinants when the input sequences are
collected simultaneously (Chapter 3). Our algorithm has multiple advantages:

• Our method can process thousands of relatively short sequences (see our dis-
cussion about running time in Section 3.5.2.1) without requiring a multiple
sequence alignment or a reference panel.

• Our method is not restricted to DBL𝛼 tags. It has the potential to be applied
to other unaligned sequences that are recombinant, although this is not tested
and beyond the scope of this thesis (this thesis specifically focuses on DBL𝛼
tags).

• Our method accepts as input both DNA and protein sequences.

171



Chapter 6

• In the presence of a high recombination rate, long sequences, a large dataset,
and even indels, our method maintains high sensitivity and specificity. Notable
is the fact that existing methods typically fail when datasets include indels.

• For every detected recombinant sequence, our algorithm provides a statistical
support value for measuring the identification uncertainty.

This work contributes to this field in two ways. Firstly, there is no method for
detecting recombinants from a large number of unaligned sequences, and our algo-
rithm fills this gap. The advantages of our algorithm, such as the generalization
and scalability, help scientists identify recombinants from more living organisms.
This is a big algorithmic advancement. The application of our algorithm also in-
creases the knowledge of many aspects, such as the properties of recombinants and
non-recombinants, the frequency of recombinants and the evolution of more species.

Secondly, applying our algorithm to Ghana’s DBL𝛼 tags yields many biologically
significant results. For the first time, our data quantitatively support the hypoth-
esis that recombination occurs preferentially within the same ups group. For the
first time, we compare relevant patterns between recombinant and non-recombinant
DBL𝛼 types. This allows us to derive multiple new results. For instance, the pro-
portions of recombinants differ among DBL𝛼 domain subclasses and ups groups, and
the non-recombinant types are more conserved than the recombinant ones. These
findings shed light on a better understanding of DBL𝛼 tags’ evolutionary history.

6.1.2 Detecting recombination with an improved JHMM

A primary shortcoming of the JHMM is that it allows recombination between any
two points in a pair of sequences, which lacks biological realism. This is also the
main cause of the JHMM’s slow performance, especially when processing lengthy
sequences. In Chapter 4, we present an improved JHMM that constrains recombi-
nation to only act between nearby positions in an unaligned set of sequences.

It is the first time that the JHMM has been improved algorithmically. In addition to
inheriting the benefits of the JHMM, our model possesses two additional advantages.
First, our model can largely reduce the artificial segments from the JHMM. It also
enjoys the similar accuracy in identifying recombinants and locating breakpoints as
the JHMM. Second, our model is faster than the JHMM, and its scalability allows
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it to be applied to larger datasets. These advantages facilitate broader applications
and more discoveries than the original JHMM.

Its application to the longitudinal datasets of Ghana expands our knowledge of
malaria DBL𝛼 tags. By identifying recombinants and analyzing recombination pat-
terns using two time-separated datasets, we obtain similar results regardless of the
dataset used. Moreover, both are consistent with the pilot dataset results, reaffirm-
ing our previous findings. Additionally, these results obtained from various time
points allow us to explore how the patterns change with time, further uncovering
new findings. For instance, the proportions of recombinants in fourteen DBL𝛼 sub-
classes are found to be significantly different from the average in both time-period
data, and half of subclasses has been confirmed using the pilot dataset. There is
also an increasing number of DBL𝛼 subclasses with time (from pilot to S5) whose
proportions of recombinants are significantly different from the average. We sug-
gest that this should be explored further for reasonable interpretations. Overall,
although more questions are proposed (and even unsolved) during our exploration,
it is indispensable for understanding the evolutionary history of malaria DBL𝛼 tags.

6.1.3 Classifying var genes into ups groups

We focus on classifying var genes into ups groups in Chapter 5. There are three ma-
jor ups groups, upsA, upsB and upsC. The current method uses the DBL𝛼 subclass
of each DBL𝛼 tag and classifies the tag into only two ups groups, upsA and non-upsA
(upsB/upsC). We introduce two methods (BLASTP-based and profile HMM-based),
which can classify each DBL𝛼 tag into three groups. The cross-validation results
demonstrate the accuracy of these two methods, which are both more accurate than
the existing method.

Importantly, our profile HMM-based method quantifies group membership probabil-
ity. Although the accuracy of the BLASTP-based and profile HMM-based methods
is similar, we show that setting a threshold on probabilities using our profile HMM-
based method could improve the classification accuracy. However, the cost is that
there are fewer classified tags.

This work is the first time in the scientific literature that non-upsA group tags can
be accurately separated using our methods. This work enables scientists to directly
compare the DBL𝛼 tags and even the whole var genes of the upsB and upsC groups
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and investigate the patterns of tags belonging to each ups group. This greatly
improves studying ups groups of var genes. Additionally, while these two methods
are explicitly designed for classifying malaria DBL𝛼 tags, they could be extended to
a similar classification for other sequences. We note that regardless of the method
used, a reference database is required.

6.2 Future directions

We discussed the limitations for each proposed algorithm/model and future research
at Discussion section 3.4, 4.5 and 5.4. Because they are provided under specific
contexts, we outline several future directions from a macro perspective below.

6.2.1 Recombination patterns with time and locations

Finding reliable biological knowledge requires datasets with spatial and temporal
characteristics. Firstly, the results could be more evident when applying our al-
gorithm (Chapter 3) to multiple locations’ datasets. All the biological findings in
this dissertation result from a study conducted in a single Ghanaian district. It is
worthwhile to determine whether our current findings apply to all regions.

Since it needs to collect sequences from various locations, the number of sequences in
some locations is likely large. It is thus possible that our current method cannot run
the dataset within a practical time. As a result, large data size stops detecting re-
combinants. A possible solution we suggest is to replace the original JHMM with our
improved JHMM (Chapter 4) in our recombinant detection algorithm (Chapter 3).
This reintegrated method applies to larger datasets.

Many questions could be studied in the future. It is interesting to see whether the
recombination rates or breakpoint distributions are similar across different coun-
tries/continents. We see the largest number of malaria cases in Africa. Whether it
is associated with a higher recombination rate or a particular recombination pattern
is a meaningful topic. Moreover, we see that the non-recombinants are more con-
served than the recombinants, and the proportions of recombinants in several DBL𝛼
domain subclasses are different from the average. Whether these patterns remain
across various locations is still an unsolved problem.
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Secondly, although we have applied our improved JHMM to a longitudinal dataset
from Ghana, only three time points are used. Once tags are collected from follow-up
surveys, applying our method (Chapter 4) enables us to obtain more statistically
significant results. Likewise, several problems could be explored further. The fre-
quency of non-recombinants is increasing from pilot to S5, and the number of DBL𝛼
subclasses whose proportions of recombinants are significantly different from the
average is also increasing. Using more time-separated datasets helps examine such
trends. It’s interesting to see how and why the non-recombinants become more con-
served with time while the recombinants are being less conserved. In addition, one
could also explore other patterns like meiotic and mitotic recombinations, and study
their prevalence in wet and dry seasons respectively.

6.2.2 Constructing a phylogenetic network of DBL𝛼 tags

Another research direction is to study the evolution of DBL𝛼 tags through a phy-
logenetic network. Such a phylogenetic network facilitates a good understanding
of various evolutionary processes, and it also helps the prediction of the gene se-
quences’ evolution. Eventually, this facilitates the development of more quantitative
strategies to control the frequent recombination of DBL𝛼 tags.

Currently, there is no method for inferring the phylogenetic network with extremely
diverse sequences like DBL𝛼 tags. However, our methods manage to detect recom-
binants from the DBL𝛼 tags, and the tags are separated into recombinants and
non-recombinants. We can infer the phylogenetic tree using the non-recombinant
tags. Although this tree is only a subset of the network, it partially uncovers the
DBL𝛼 tags’ evolution.

In our view, there are two possible methods for constructing this network. The
first method is to divide the tags into small regions based on biological properties.
Shorter sequences are easier to infer the evolutionary history. Another method is to
use the trees of each triplet obtained from Chapter 3 and then join them together.
In addition, the tags in our longitudinal study could calibrate the inference. While
the design of such methods goes beyond the scope of this thesis’s work, constructing
a phylogenetic network is essential for studying the evolution of DBL𝛼 tags.
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Last but not least, although our work described in this thesis contribute a better
understanding of DBL𝛼 evolution, there are still lots of unsolved questions for im-
plications in practical malaria intervention and control. From our work, we have
noticed that the proportion of recombinant DBL𝛼 tags experiences a sharp decrease
from pre-IRS to IRS and a slow increase from IRS to post-IRS. However there is
no evidence that this IRS intervention is the cause of the change in recombination
frequency; moreover, it’s unclear how much the frequent recombination in a tag of
∼370nt length affects the overall virulence of parasites and continuously emerging
drug resistance; we also found different proportions of recombinants in three ups
groups of var genes. Since different ups groups are associated with disease severity,
it is unknown whether recombination plays a role in the disease severity, even if it
does, how to manipulate the recombination to minimise disease impacts is unclear.

In conclusion, there is a huge gap between our current knowledge like DBL𝛼 recom-
bination and conclusive implications in malaria. In my view, scientific measures to
prevent and control malaria require much more research in the future among sci-
entists (e.g. mathematician, biologist, geneticist, immunologist) from various fields.
Nevertheless, our work in this thesis is a stepping stone toward this future research.
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Appendix A

Analysis of DBL𝛼 tags from a

cross-sectional study in Ghana

A.1 Introduction

Plasmodium falciparum [27–29] is the most virulent and predominant parasite species

[217] that causes human malaria. It has caused 300, 000 deaths and 200 million clin-

ical cases each year [26] and imposed a huge health and economic burden [5]. The

antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) plays a

key role in the immune evasion of P. falciparum [40]. It helps parasites to evade the

detection of the human immune system, as a consequence, the parasites could stay

in the human blood for a long period of time and cause waves of parasitemia [258].

PfEMP1 is encoded by hyper-diverse var genes, and recombination is one of the main

mechanisms for maintaining var diversity. Therefore, studying the recombination of

var genes has been of great interest to scientists.

A lot of studies have specifically focused on the DBL𝛼 tag of var genes [62, 69–

76]. Recently Tonkin-Hill et al. [62] combined previously published DBL𝛼 tags

from ten countries and applied the jumping hidden Markov model (JHMM) [54] to

explore the DBL𝛼 structure globally. With the generated mosaic representations

from the JHMM, one could study many aspects of the recombination patterns, for
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instance, the number of parental sequences for each recombinant, the length of

parental segments. However, their analysis about these studies is very limited owing

to different research purposes.

To fill in this gap, we applied the JHMM to a dataset of DBL𝛼 tags from the Ghana

pilot study (introduced in Section 1.2) and performed a comprehensive analysis of

the mosaic representations. We studied the breakpoint distribution and frequencies,

the length of parental segments and the characteristics of recombination positions

between parental sequences. We also repeated the analysis for the generated mosaic

representations using the global data [62] and subsequently made comparisons using

these two datasets. Overall, we aim to understand the underlying recombination

patterns in these datasets.

In addition, Tonkin-Hill et al. [62] found the DBL𝛼 population structure using the

global sequences. Specifically, they used the DBL𝛼 tags with less than 96% sequence

identity and found the DBL𝛼 population structure was stratified by countries. Al-

though DBL𝛼 tags from the pilot study (Section 1.2) were only from a district of

Ghana, the information about the specific catchment area for most isolates was

available, so we also wanted to explore if there was any similar population struc-

ture stratified by catchment areas. Therefore, we applied their approaches to this

dataset, although we did not find any population structure at our side eventually.

We emphasize that above work is exploratory analysis. However we do believe

these basic analysis would help readers to better understand our data. This is also

beneficial to better understand Chapter 3 and 4. After all, it is vital to understand

the structure of the data before attempting to develop methods for it. Finally, even

though these results are in the appendix, we do provide enough details as below.
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A.2 Results

A.2.1 Data summary

The dataset from Ghana pilot study consists of 35, 591 DBL𝛼 tags with an average

length of 370nt (s.d. 25.6nt). They are distributed among a total of 161 isolates,

noting that only 133 isolates (82.6%) have information about the corresponding

catchment areas (51 isolates from Soe; 82 isolates from Vea/Gowrie), and the re-

maining ones are unknown. The dataset in Tonkin-Hill et al. [62] consists of 98, 322

DBL𝛼 tags collected from 1, 248 P. falciparum infected isolates with an average

length of 373nt (s.d. 35.5nt).

We note that a subset of isolates in the Ghana dataset of [62] also makes up the

dataset in the pilot study (Section 1.2). Though both DBL𝛼 datasets were generated

through targeted amplicon sequencing, the former was sequenced on the Roche 454

platform while the latter was generated using the Illumina MiSeq platform. Com-

pared to the Roche 454 platform, the Illumina platform generates higher throughput

of data, thus resulting in higher sequence coverage, with a lower sequencing error

rate [259, 260]. We obtained 35, 591 tags from the pilot study and 20, 643 tags in

Ghana from the global study [62], and these two datasets are largely the same. Al-

though the global dataset and the Ghana pilot data differ in sequencing technology

and scope, our goal is to see whether the recombination patterns of DBL𝛼 tags are

similar among these two datasets.

A.2.2 Comparison of the JHMM output between Ghana and

global datasets

A.2.2.1 Estimated parameters

As mentioned in Section 2.2.2.2, there are three parameters to be estimated in the

JHMM: gap opening probability 𝛿, gap extension probability 𝜖 and probability of

recombination 𝜌. Zilversmit et al. [54] estimated these parameters in two steps. In
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Figure A.1: Convergence of non-jump parameters. This figure shows the
estimated 𝛿 and 𝜖 (using the Viterbi training algorithm) with iterations on our
Ghana pilot dataset.

the first step, they estimated the non-jump parameters by employing the Baum-

Welch algorithm with 𝜌 fixed at 0; in the second step, a grid of 𝜌 from 0 to 0.1

was used to compute the composite likelihoods for all sequences. Finally, 𝜌 was

determined by the maximum composite likelihood.

Tonkin-Hill et al. [62] modified the above steps since a practical computation is in-

feasible owing to their large number of sequences. They replaced the Baum-Welch

algorithm with the faster Viterbi training algorithm (see Section 2.2.1.3) for estimat-

ing 𝛿 and 𝜖; they randomly sampled 1, 000 sequences from the target set to compute

the likelihood when estimating 𝜌.

In order to achieve a realistic computational time for the dataset in Ghana pilot

study, we followed this modified pipeline. As shown in Figure A.1, the 𝛿 and 𝜖

converged (parameter difference is less than 1% between consecutive iterations) after

8 iterations. We generated a likelihood surface (Figure A.2) by summing 1, 000

likelihood values and determined 0.015 as the optimal value of 𝜌.

Table A.1 shows the estimated parameters for Ghana and global datasets. The gap

opening probability is slightly lower in the Ghana data than in the global data,
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Figure A.2: Composite likelihood surface for a grid of 𝜌. Each bar is the
95% confidence interval based on 1, 000 bootstrap replicates on the likelihoods.

while the probabilities of gap extension and recombination are similar. Overall,

the differences in estimated parameters between these two datasets are small, as it

should be.

Table A.1: Estimated JHMM parameters using the Ghana and global
datasets.

Parameters Ghana data Global data [62]

𝛿 0.008 0.017
𝜖 0.228 0.273
𝜌 0.015 0.014

A.2.2.2 Distribution of breakpoints

Mosaic representations from the JHMM provide us with the breakpoint positions of

recombinations. We computed the relative positions of breakpoints from the Ghana

data to explore how the breakpoints are distributed along the DBL𝛼 tags. We show

a few mosaic representations using this data in Figure A.3. The result (Figure A.4)

indicates the uneven distribution of breakpoints. In particular, recombination occurs

more frequently in three regions. We identified conserved regions in the DBL𝛼
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Figure A.3: Few mosaic representations from the JHMM using the
Ghana data.

tags, called homology blocks (HB) [46]. The close relationship between these three

regions and locations of common HBs are discussed in Section 3.3.2.4. Furthermore,

although the frequency of breakpoints at both ends of the tag seems low, this does

not mean recombination there is rare. More likely it is because the sequences there

are very similar, and it is difficult/impossible to detect recombination.

To compare the breakpoint distributions using the Ghana pilot data and global data,

we also computed the breakpoints’ relative positions from the JHMM output of the

global dataset. The global data shows three peaks in the breakpoint distribution,

which overlay the peaks using the Ghana pilot data. Figure A.4 also shows that

the bar heights of two histograms are almost the same across intervals. Overall, the

breakpoint distributions are similar in both two datasets.
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Figure A.4: Kernel density curves and histograms for the breakpoint
distribution along DBL𝛼 tag from the global and Ghana datasets. Bar
height indicates the normalized breakpoint frequency at each location interval.

A.2.2.3 Number of breakpoints per tag

To explore the frequency of recombination, we counted the number of constituting

source segments per DBL𝛼 tag from the JHMM output. Figure A.5 shows the

distribution of the number of source segments. We can see that the two distributions

from the global and Ghana data are almost the same. The most common scenario

for both two datasets is that there is only a single breakpoint (44.0% of tags in global

data, 33.7% of tags for Ghana data). As the number of breakpoints increases, the

frequency decreases. This matches our expectations since it is unlikely that many

recombination breakpoints exist in a single tag. When the breakpoints reaches 3 at

two datasets, both take up more than 85.0% of their separate sequence sets.

We noticed that some source fragments consist of only one amino acid (see the

third source at Figure A.6 as an example) in the JHMM output. This indicates

the JHMM is not finding the biological truth. In order to see the proportion of

these cases, we generated the distribution of segment length using the global and

Ghana data. The corresponding result is shown in Figure A.7. We found that the

proportion of length-one segments is the largest in each dataset. There are two
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Figure A.5: Distribution of source segment counts from the JHMM
output in the global and Ghana data.

Figure A.6: An example of the mosaic representation from the Ghana
data that contains a single character as the contributing source.

possible reasons for this. Firstly, the JHMM allows recombination between any two

points in a pair of sequences. This unconstrained pattern makes the model to simply

pick out an amino acid that is not truly homologous, and we think this is the artifact

of the JHMM. Our improved JHMM described in Chapter 4 is designed to address

this issue. Another potential reason is that the estimated recombination parameter

is too high. A high recombination rate might lead to many short source fragments.

We studied the second hypothesis and found that it’s highly unlikely. We note

that the recombination parameter is estimated by maximizing the likelihood of data

given the gap opening probability and gap extension probability. We are not sure

whether reducing the estimated 𝜌 manually is appropriate or not, but we still used

a lower 𝜌 (0.01) to regenerate the mosaic representations using both the Ghana and

global data. Results (not shown) indicate that there is a decrease in the proportion

of length-one source fragments in Ghana data, but the difference is small (2.4% to
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Figure A.7: Source segment length from the JHMM output using the
global and Ghana data.

2.2%), while there is no change of the proportion in global data (2.5% before and

after).

Finally, we found that the length distributions (Figure A.7) using the two data sets

both show multimodality. One peak of segment length distribution is at 1/2 of the

tag, and another peak is at 1/4 of the tag (a slight rise is around 3/4 of the tag).

These peaks are reasonable as the breakpoint distributions contain three frequent

recombination positions (1/2, 1/4 and 3/4 of the tag).

A.2.2.4 Horizontal jumps

Although the DBL𝛼 tags’ lengths are diverse, they are homologous sequences. The

alignment of these sequences is expected to keep the relative positions of each se-

quence roughly the same per character (column). Therefore, we hypothesized the

recombination happens at homologous positions. Specifically, when a source se-

quence “jumps” to another source in a mosaic representation, we would like to see

it does not jump very far. For instance, if a breakpoint is at the center of the first

source sequence, we aim to explore whether it jumps to the center of the second
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Figure A.8: Three types of jump in the mosaic representation. (a)
shows the recombination happens at homologous position of source sequences. In
contrast, examples of a backward and forward jump are shown in panel (b) and (c)
respectively, indicating the recombination happens at non-homologous position.

source as well. If the recombination does not happen at homologous positions, we

show such examples in the panel (b) and (c) of Figure A.8, in these scenarios, there

are horizontal jumps between sequences.

When a mosaic representation contained breakpoints, we compared the relative po-

sitions on either side of a recombination. This resulted in the distance between its

consecutive source segments (the start position of second source segment minus the

end position of first source segment). If most distance values are small, it suggests

that the DBL𝛼 recombination happens at homologous positions.

For calculating the above distance values, we computed the normalized position

range for each contributing source segment, and then calculated the distance between

each pair of consecutive intervals. See Figure A.9 as an example, the distance values

in this mosaic representation are (1) 0.14 − 0.13 = 0.01, (2) 0.66 − 0.67 = −0.01.

Single-site segments were excluded since they are difficult to locate accurately.

Figure A.10 shows the distribution of distances using Ghana and global data. This

graph suggests that most distance values fall in the interval [−0.025, 0.025] of tag in

both datasets. 38.3% of distances from the Ghana data and 40.4% of distances from

the global data are outside of this interval. The mean distance is 0.006 for Ghana

and 0.005 for the global dataset. Although the means are not statistically equal,
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Target A G T C K D I M M M - F

Source1 A G T T [0.01, 0.13]

Source2 K D - M [0.14, 0.67]

Source3 M M K F [0.66, 1.00]

Figure A.9: An example of the JHMM output for calculating the dis-
tance between consecutive source segments. The normalized position range
of each contributing source is shown by the interval.
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Figure A.10: Histogram of the difference between consecutive source
segments from the JHMM output using our Ghana (left) and global
(right) datasets. The dashed line indicates the median.

they both correspond to one amino acid by accounting for the tag length (∼124aa)

and this is in line with our expectation. In summary, these results do not support

the presence of horizontal jumps in the recombination of DBL𝛼 tags.

A.2.3 Local DBL𝛼 population structure

Tonkin-Hill et al. [62] used phylogenetic trees to assess the population structure

of DBL𝛼 tags. Each tip of the tree represents an isolate (individual), and the

structure of the tree shows the relatedness of isolates. They found the isolates in

their constructed trees were clearly separated by country of origin and therefore
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uncovered the global population structure. Here we followed their methods and

explored the local population structure of DBL𝛼 tags from the Ghana pilot dataset.

Two different methods for generating DBL𝛼 phylogenetic trees were used in [62].

The first method used the binary presence/absence matrix after clustering DBL𝛼

tags into DBL𝛼 “types” based on 96% similarity. This matrix shows which DBL𝛼

type (row) is present in each isolate (column). With this matrix, RAxML [261] was

then used to generate a tree by treating each isolate’s presence/absence vector as

a binary sequence. The second method used individual tags (rather than DBL𝛼

types to avoid information loss) as input and generated a tree with an alignment-

free algorithm named feature frequency profile (FFP) [222]. The FFP approach

determined a distance matrix between sequences with a sliding-window method and

the phylogenetic tree was then inferred by FastME [262] based on balanced minimum

evolution [263]. We show the details for how to generate the binary presence/absence

matrix and related FFP analysis in the Methods section.

We followed these two methods and the resulting trees are in Figure A.11 and A.12.

These two trees show different topologies, since we used different information of the

data. We colored the tree tips by the catchment areas of isolates (Vea/Gowrie, Soe,

unknown location). We note that both trees are unrooted, and the roots shown in

these figures were chosen arbitrarily for the display. From these trees, we can see

the isolates were not stratified by catchment areas. To test this statistically, we used

the 𝛿 statistic [264] to measure the phylogenetic signal between a phylogeny and a

categorical trait. Since there are few isolates with unknown catchment areas, we

removed those tips and only considered the extracted phylogeny so that each tip has

the location information. We found that there is no evidence for the phylogenetic

signal from both two trees generated from (a) RAxML, (b) FFP and FastME (𝑝

values are 0.84 and 0.18 respectively). Therefore, there is no clear separation of

geographical locations from both trees. A potential reason is that the distance

between catchment areas is very close in the relatively flat Ghana Bongo District.

In addition, we see both two trees show long branch lengths for tips and short

branch lengths for internal nodes. There are also few branches with support values
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Figure A.11: A phylogenetic tree of isolates generated by RAxML
v8.2.12 [261] with BINCAT model. This tree was built using each isolate’s
binary sequence from the presence/absence matrix of DBL𝛼 types. We set the
number of bootstrap replicates to 100, and the branches with support value over
60 were annotated.

over 60 in the tree in Figure A.11. All of them indicate the resulting trees may not

contain sufficient phylogenetic information. We note that this is not a meaningless

analysis. In fact, it is the opposite! The reasons that makes these trees with limited

phylogenetic signals is the existence of frequent recombination. Therefore, we need

to develop recombination-aware methods to address it. This is also the motivation

for majority of our work described in this thesis (Chapter 3 and 4). In addition, our

results further suggest new ways of phylogenetic analysis for DBL𝛼 tags are needed

in the future.

The binary presence/absence matrix (Figure A.13) provided us with additional de-

tails of the data. We found most DBL𝛼 types were rare, occurring in less than 20

isolates (Figure A.14). Soe has the largest median number of DBL𝛼 types per isolate

(Figure A.15), although the mean difference in the number of DBL𝛼 types between

the two catchment areas is not significant (two-samples Wilcoxon test, 𝑝 = 0.109
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Location
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Vea/Gowrie

Figure A.12: A phylogenetic tree of isolates produced by FFP v3.19
[222] and FastME 𝑣2.0 [262]. This tree was built using the distance matrix
from all DBL𝛼 sequences with the FFP method. We could not do bootstrapping
as in Figure A.11, since FastME cannot perform bootstrapping when the input
data for inferring the phylogeny is a distance matrix, see its online execution [265]
and README from downloads.

for Soe and Vea/Gowrie). In addition, Tonkin-Hill et al. [62] conducted a principal

component analysis (PCA) on this binary matrix and discovered a clear separation

between South American isolates and other regions’ isolates in their PCA plots.

Following this strategy, we generated the plots using our matrix. The result (Fig-

ure A.16) suggests that the catchment area is not a highly variable feature that PCA

could identify. Again, the geographical distances of isolates might explain this. After

all, the isolates in [62] are from ten countries across Africa, Asia and South America.

In contrast, the isolates from the pilot study are only from a district in Ghana.
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Figure A.13: Binary presence/absence matrix of conserved DBL𝛼 types
(occurring in over 20 isolates). Each entry of this matrix is 1 (black) or 0
(white), representing the presence or absence of a DBL𝛼 type (row) in the isolate
(column). Isolates were arranged by catchment areas.
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Figure A.14: Histogram of DBL𝛼 type frequency. We counted the fre-
quency of each DBL𝛼 type present in isolates using the trimmed binary pres-
ence/absence matrix.
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Figure A.15: Number of DBL𝛼 types per isolate in Ghana. We counted
the number of DBL𝛼 types per isolate from the trimmed binary presence/absence
matrix and used a boxplot to describe the corresponding distribution for each
catchment area. Mean values were highlighted by red dots.
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Figure A.16: PCA plot from the trimmed binary presence/absence ma-
trix of DBL𝛼 types. Each dot represents an isolate, colored by locations. We
found there is no clear separation between catchment areas from the first six com-
ponents including first two components.
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A.3 Conclusion

In this appendix, we have applied the JHMM [54] and the methods of Tonkin-Hill

et al. [62] to a new dataset of DBL𝛼 tags to understand the underlying recombination

patterns in the data and how the population structure observed in a worldwide

dataset translates to a more localized dataset.

We systematically analyzed the patterns of DBL𝛼 recombination through two dif-

ferent datasets. We found uneven breakpoint distribution along the DBL𝛼 tag, with

more recombination in HB regions. This is consistent with the findings in Tonkin-Hill

et al. [62]. We also found the number of parental sequences varied among recom-

binants, with most recombinants having two parents only. The lack of horizontal

jumps indicates the recombination occurs between homologous locations. Moreover,

although these two datasets differed in scope and sequencing technology, we found

the recombination patterns were similar across dataset. These are all novel findings.

Importantly, these results have inspired us to take further investigations of DBL𝛼

recombination, as shown in Chapter 3 and 4.

We also explored the local DBL𝛼 population structure using the same methods

in Tonkin-Hill et al. [62] with minor adjustments. Although we did not find the

generated phylogenetic trees stratified by catchment areas of isolates, the Ghana

data we used might be under-representative for exploring the local structure. One

interesting direction would be collecting DBL𝛼 tags from more districts within a

country, we think the results might provide a finer resolution compared with the

existing global DBL𝛼 population structure.

A.4 Methods

The generation of DBL𝛼 tags in this study is described elsewhere [70, 74, 84]. Briefly,

after obtaining the informed consent from each participant, finger-prick blood sam-

ples were collected as dried blood spots for laboratory molecular analyses and the

identification of parasite species. They studied the individuals with asymptomatic
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malaria and positive P. falciparum infections tested by microscopy or 18S rRNA

polymerase chain reactions (PCRs) [74, 84]. From the dried blood spots of these

individuals, genomic DNA was extracted using QIAampTM DNA Mini Kit (Qiagen,

Valencia and CA). The DBL𝛼 domains of var genes from genomic DNA were then

ready for PCR amplification. The universal degenerate primer sequences [47, 266]

were used for this process. The amplicons were then pooled and sequenced with

Illumina MiSeq sequencer [70], and finally corresponding DBL𝛼 tags were identified

from Illumina paired end data with a custom python pipeline [267]. We accessed

35,591 DBL𝛼 tags from the Ghana pilot study, and these tags are publicly available

(see the Data availability section).

We note that all the methods for generating phylogenetic trees and the pre-process

step of the data for implementing the JHMM are all from Tonkin-Hill et al. [62].

Therefore, we did not introduce new methods in this appendix. Below we summarize

these methods.

A.4.1 Binary type analysis

For generating the binary presence/absence matrix, we followed the standard pipeline

used in [62, 74] by clustering DBL𝛼 tags to representative DBL𝛼 tags (‘types’).

This was done by a series of commands of USEARCH 𝑣8.1.1861_𝑖86𝑜𝑠𝑥32 [216]

software suite. Specifically, the tags were clustered into centroids based on 96%

similarity using the cluster_fast command after removing the duplicates with the

derep_prefix command. The threshold of 96% identity is a standard part of the

DBL𝛼 preprocessing pipeline [204] and has been used in many studies ([67, 78, 195,

196, 202]). Here “removing the duplicates” means that a sequence 𝐴 is discarded if

it is a prefix of another sequence 𝐵 in the set. This filtered out both the fragments

and full-length duplicated DBL𝛼 tags [268]. Afterwards, by searching the original

unfiltered tags against the centroids using the usearch_global command, a binary

presence/absence matrix was generated. Each row of this matrix refers to a DBL𝛼

type, and each column represents an isolate. Every entry in this matrix describes

whether the DBL𝛼 type is present (1) or absent (0) in the isolate.
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This binary matrix was trimmed prior to the downstream analysis. Specifically, 2

isolates (1.2% of entire isolates) with less than 20 DBL𝛼 types were excluded due to

the limited number of types per isolate, and singleton types (occurring in only one

isolate, 64.8% of entire DBL𝛼 types) were also removed as we were more interested

in the relationships between isolates. Eventually, we obtained a binary presence/ab-

sence matrix containing 6, 311 DBL𝛼 types distributed among 159 isolates.

A.4.2 Feature frequency profile analysis

For determining the window size and calculating the distance matrix of isolates, we

followed the feature frequency profile (FFP) method [222]. We first chose the 3D7

isolate sequences as the reference. The whole genome sequences of P. falciparum

clone 3D7 have been investigated for years [269–274] and are trustworthy [45]. To

calculate the optimal window size 𝑘 based on the reference sequences, we computed

its lower and upper bounds using methods in [222].

1. Lower bound is determined by the value which corresponds to the largest

number of unique vocabulary features (features that occur at least twice in

the sequence). A 𝑘 below this lower bound yields unreliable tree topologies.

2. Upper bound is determined by cumulative relative entropy (CRE), measured

by the difference between the expected feature frequency and the observed one.

When the CRE converges to zero, the expected feature frequency is sufficiently

accurate and larger 𝑘 is redundant.

In Figure A.17, the left panel determines the lower bound of 𝑘, which is 17, and the

right panel shows the upper bound of 𝑘, i.e., 22, so the range of 𝑘 is between 17 and

22. Therefore, 𝑘 = 20 is a sensible choice.

We then calculated the distance matrix with the determined 𝑘. First, concatenating

the sequences of each isolate, we counted all the possible length-𝑘 segments by the

sliding-window technique. These raw frequency counts were then normalized to a

probability distribution vector (or FFP) per isolate. Next, we computed the distance
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Figure A.17: Determining the window size 𝑘. The lower bound of 𝑘 corre-
sponds to the largest feature count, while the upper bound of 𝑘 is the value when
the CRE starts to converge to 0.

between any two isolates via the Jensen-Shannon (JS) Divergence [275] between the

corresponding FFPs. Although there are multiple distance measures, the advantage

of JS divergence is that the resulting distance matrix is symmetric, and each value

in the matrix is positive, which is essential for tree construction using distance-based

methods. Finally, we used FastME 𝑣2.0 [262] with default settings and the R package

ggtree [276] for generating and visualizing the resultant tree respectively, which is

shown in Figure A.12.

A.4.3 Data pre-processing for the JHMM

There are several pre-processing steps before implementing the JHMM. Following

the standard pipeline [62], we first removed the non-translatable tags, i.e, tags con-

taining a stop codon. Next, we clustered the DNA tags at 96% similarity threshold

(see above Section A.4.1) to obtain DBL𝛼 types. Finally, we extracted the protein

sequences that correspond to the DBL𝛼 types, resulting in 17, 335 representative

protein sequences as the input to the JHMM [54]. In contrast, there were 31, 946

representative protein sequences generated from the global data. The reason we
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chose the amino acid instead of DNA sequences as input to the JHMM is for com-

putational purpose (as protein sequences are shorter). The ratio of tags to types in

the Ghana data is lower than that of global data (2.05 vs. 3.08), suggesting greater

overlap among global DBL𝛼 tags than the tags from Ghana locally.

Data availability

The DBL𝛼 tags from Ghana pilot study are publicly available (GenBank BioProject

Number: PRJNA396962). Scripts and data are available on Github (https://github

.com/qianfeng2/Ghana_data_analysis) or Zenodo (https://zenodo.org/doi/10.

5281/zenodo.13764593).
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