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 2 

Abstract 23 

Fine-mapping refines genotype-phenotype association signals to identify causal variants 24 

underlying complex traits. However, current methods typically focus on individual genomic loci 25 

and do not account for the global genetic architecture. Here, we demonstrate the advantages of 26 

performing genome-wide fine-mapping (GWFM) with functional annotations and develop 27 

methods to facilitate GWFM. In simulations and real data analyses, GWFM outperforms current 28 

methods across multiple metrics, including error control, mapping power, resolution, precision, 29 

replication rate, and trans-ancestry phenotype prediction. Across 48 complex traits, we identify 30 

credible sets that collectively explain 18% of the SNP-based heritability (����
� ) on average, with 31 

30% credible sets located outside genome-wide significant loci. Leveraging the genetic 32 

architecture estimated from GWFM, we predict that fine-mapping over 50% of ����
�  would 33 

require an average of 2 million samples. Finally, as proof-of-principle, we highlight a known 34 

causal variant at FTO for body mass index and identify novel missense causal variants for 35 

schizophrenia and Crohn’s disease.   36 
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Introduction 37 

Despite the success of genome-wide association studies (GWAS) in identifying trait-associated 38 

variants1, the causal variants underlying complex traits remain unresolved due to extensive 39 

linkage disequilibrium (LD) between SNPs2 and the polygenic nature of these traits3,4. Statistical 40 

fine-mapping, often employing a Bayesian mixture model (BMM) that jointly fit multiple SNPs, 41 

offers a direct approach to identifying candidate causal variants5. However, current fine-42 

mapping methods focus on genome-wide significant loci only (e.g., 1-2 Mb windows centred on 43 

lead SNPs after LD clumping6-12) or consider one genomic region at a time (e.g., a LD block13), in 44 

isolation from the rest of the genome.  45 

 46 

While widely used, region-specific analysis has several limitations. First, restricting fine-47 

mapping to GWAS loci alone, which often explain only a small fraction of the total genetic 48 

variance14,15, omits meaningful signals that have not yet reached the stringent GWAS 49 

significance threshold. Second, the prior probability of association can be influential but is often 50 

conservatively predetermined  (e.g., as the inverse of the number of SNPs in the region6,7,16) due 51 

to challenges in estimating the genetic architecture within a region. Third, fine-mapping can 52 

benefit from incorporating functional genomic annotations10-12,17, but region-specific methods 53 

often estimate functional priors separately before performing functionally-informed fine-54 

mapping10-12,17, rather than jointly modelling GWAS data and functional annotations. Finally, 55 

none of the current methods estimate the power of identifying the causal variants for a trait, 56 

which is critical to inform the experimental design of prospective studies (such a power analysis 57 

is available in GWAS18 but absent in fine-mapping). 58 

 59 

These limitations can be addressed with genome-wide fine-mapping (GWFM) analysis. Genome-60 

wide Bayesian mixture models (GBMMs), extensively used for predicting breeding values in 61 

agriculture19-21 and complex trait phenotypes in humans22-24, have recently emerged as a 62 

method for GWFM25,26. Unlike conventional GWAS and region-specific fine-mapping approaches, 63 

GBMMs jointly fit genome-wide SNPs in the model, simultaneously estimating the genetic 64 

architecture and functional priors through “information borrowing”24,25. For example, SNPs 65 

sharing the same functional annotation across the genome collectively prioritize that annotation 66 

based on their aggregated evidence of trait association, which, in turn, informs the estimation of 67 

individual SNP effects. This learning process is often performed iteratively using Markov chain 68 

Monte Carlo (MCMC) sampling, leading to posterior inference with superior asymptotic 69 

accuracy compared to variational inference27,28, though MCMC sampling can be computationally 70 

intensive with high-density SNPs. Moreover, GBMMs estimate polygenicity and the distribution 71 
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of variant effect sizes3,20,22-24,29, enabling the prediction of power for prospective studies with 72 

larger sample sizes. However, relevant theory and methods have not yet been developed.  73 

 74 

In this study, we comprehensively evaluated the performance of GWFM analysis using 75 

SBayesRC24, a state-of-the-art GBMM that enables efficient MCMC-based fitting of all common 76 

SNPs with functional annotations. Through extensive simulations under various genetic 77 

architectures, we compared methods using multiple metrics, including posterior inclusion 78 

probability (PIP) calibration, fine-mapping power, mapping precision, credible set size, 79 

replication rate in independent samples, and out-of-sample prediction accuracy using fine-80 

mapped variants. We developed an LD-based method to construct local credible sets (α-LCSs) 81 

for GBMM, each capturing a causal variant with posterior probability α, and estimated the 82 

proportion of SNP-based heritability (����
� ) explained by these LCSs. To quantify overall fine-83 

mapping uncertainty, we provided a global credible set (α-GCS) that captures α% of all causal 84 

variants for the trait. Leveraging the genetic architecture estimated from SBayesRC, we further 85 

developed a method to predict fine-mapping power and the ����
�  explained by identified 86 

variants in prospective studies, enabling estimation of the minimal sample size required to 87 

capture a desired proportion of causal variants or ����
� . Finally, we applied SBayesRC to 599 88 

complex traits and diseases with 13 million SNPs and compared the fine-mapping results for 48 89 

well-powered traits, primarily using data from the UK Biobank30 (UKB). 90 

 91 

Results 92 

Method overview 93 

We selected SBayesRC as the method for GWFM (Fig. 1) because it outperforms other GBMMs in 94 

polygenic prediction24. SBayesRC is a multi-component mixture model that simultaneously 95 

analyzes all SNPs across approximately independent LD blocks13,31, using a hierarchical prior to 96 

borrow information from functional annotations across the genome for fine-mapping within 97 

blocks, where both annotation and SNP effects are jointly estimated from the data (Methods). 98 

Unlike existing fine-mapping methods that focus on specific GWAS loci, SBayesRC accounts for 99 

long-range LD (variable LD block sizes with a minimum of 1 Mb, including the major 100 

histocompatibility complex (MHC) region) and maps causal signals over the entire genome 101 

(Supplementary Table 1). To optimize fine-mapping performance, we heuristically estimated 102 

the number of mixture components, adapted a tempered Gibbs sampling algorithm32 to improve 103 

mixing properties, and implemented a method33 to assess MCMC convergence using multiple 104 

independent chains (Methods). Further methodological differences between our approach and 105 

existing methods are discussed in Supplementary Note 1. 106 

 107 
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 5 

To capture the uncertainty in identifying causal variants driven by LD, we developed an LD-108 

based method for constructing α-LCSs (Methods; Supplementary Fig. 1). Our approach forms 109 

an �-LCS for each candidate causal variant with a leading PIP by grouping it with SNPs in LD (r2 > 110 

0.5) until their combined PIPs sum to �. To refine the LCSs, we further filter them based on the 111 

posterior �
���

�  enrichment probability (PEP > 0.7) to ensure that the selected LCS explains more 112 

����
�  than a random set of SNPs with the same size, using MCMC samples of SNP effects 113 

(Methods). Additional justification for the r2 and PEP thresholds is provided in Supplementary 114 

Note 2 and Supplementary Fig. 2-3.  115 

  116 

Since SBayesRC estimates the genetic architecture of the trait, this framework lends itself to 117 

quantifying overall uncertainty in fine-mapping and predicting power for future GWFM studies. 118 

The overall uncertainty in the current study is captured by our α-GCS, which is expected to 119 

cover �% of all causal variants for the trait, with the size of α-GCS reflecting power and genetic 120 

architecture (Methods). Fine-mapping power prediction for prospective studies is achieved by 121 

deriving the sampling distribution of PIP given a sample size (Methods). This method allows us 122 

to estimate the minimal sample size required to achieve the desired power to identify all causal 123 

variants or those explaining a specific proportion of ����
� . Although we focused on European 124 

ancestry in this study, our power prediction method is, in principle, applicable to other 125 

ancestries; however, the genetic architecture would need to be estimated using ancestry-126 

specific GWAS data, as it may vary across populations. Our fine-mapping power prediction 127 

method is analytically tractable and available as a publicly accessible online tool 128 

(https://sbayes.pctgplots.cloud.edu.au/shiny/power/). 129 

 130 

Calibration of fine-mapping methods under various genetic architectures 131 

We performed extensive genome-wide simulations to evaluate SBayesRC for GWFM, comparing 132 

to FINEMAP7, SuSiE6, FINEMAP-inf8, SuSiE-inf34, PolyFun+SuSiE10, and another two GWFM 133 

methods, SBayesR22 and SBayesC (two-component SBayesR). For a fair comparison, we defined 134 

fine-mapping regions consistently across all methods using independent LD blocks and applied 135 

the default parameter settings recommended for each method (Methods). Using 100,000 136 

individuals with ~1 million HapMap3 SNPs from the UKB30, we simulated three genetic 137 

architectures: 1) a sparse architecture with 1% randomly selected causal SNPs explaining 50% 138 

of phenotypic variance, 2) a large-effects architecture where 10 random causal variants 139 

contributed 10% of phenotypic variance and the rest 40%, and 3) an LD-and-MAF-stratified 140 

(LDMS) architecture with causal variants sampled from high LD score and high minor allele 141 

frequency (MAF) SNPs (Methods).  142 

 143 
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 6 

Results showed that GWFM methods generally performed better in terms of PIP calibration 144 

compared to region-specific methods, with PIPs from SBayesRC closely aligning with true 145 

probabilities of causality (measured by true discovery rate, TDR) across all genetic 146 

architectures (Fig. 2a,d,g). In contrast, SuSiE and FINEMAP exhibited notable inflation in high-147 

PIP SNPs (Fig. 2b,e,h), indicating poor control of false discovery rate (FDR = 1-TDR). While 148 

SuSiE-inf and FINEMAP-inf performed reasonably well under the sparse and large-effects 149 

architectures (despite some deflation in low-PIP SNPs), their PIPs failed to track TDR accurately 150 

under the LDMS architecture, where causal variants were not randomly distributed (Fig. c,f,i). 151 

Polyfun+SuSiE, when incorporating the same LD/MAF annotations as SBayesRC, showed 152 

improved performance over SuSiE and FINEMAP but still struggled with FDR control (Fig. 2i). 153 

The alternative GWFM methods, SBayesC and SBayesR, were inferior to SBayesRC under the 154 

large-effects and LDMS architectures, respectively, highlighting the importance of using 155 

multiple mixture components and integrating informative genomic annotations for robust 156 

calibration.  157 

 158 

Assessing mapping power, resolution, and precision via simulations 159 

We first compared the power of different fine-mapping strategies, GWFM and GWAS loci-based 160 

fine-mapping, by evaluating the proportion of causal variants captured by α-LCSs. For a fair 161 

comparison, GWAS loci-based fine-mapping used the same PIP estimates as GWFM with 162 

SBayesRC but was restricted to 2Mb regions around GWAS lead SNPs (P-value < 5×10-8). As 163 

expected, GWFM was significantly more powerful, with 46%-61% improvement across genetic 164 

architectures (Fig. 3a-c). This highlights the advantage of considering the entire genome, 165 

including regions not genome-wide significant in GWAS, in fine-mapping.  166 

 167 

Next, we compared different fine-mapping methods, focusing on SBayesRC and SuSiE-inf, as 168 

SuSiE-inf had the best PIP calibration and least FDR inflation among the region-specific methods. 169 

Our results showed that SBayesRC was significantly more powerful (Fig. 3d-f), with similar TDR 170 

(Supplementary Fig. 4a-c) but smaller LCS sizes at the same � threshold, indicating superior 171 

mapping resolution (Fig. 3g-i). For �=0.9, SBayesRC outperformed SuSiE-inf by up to 194% 172 

increase in power and 21% reduction in average LCS size across the three genetic architectures. 173 

Polyfun+SuSiE, which incorporated LD/MAF annotations through a stepwise analysis, 174 

performed slightly better than SuSiE-inf under the LDMS architecture but remained inferior to 175 

SBayesRC. Mapping precision was assessed as the distance from an identified variant (PIP > 0.9) 176 

to the nearest causal variant. Under the sparse architecture, 98% of SNPs identified by 177 

SBayesRC were causal, and 99% of SNPs with PIP > 0.9 were within 18kb of a causal variant, 178 

leading to a 2% increase in TDR and a 68% reduction in distance compared to other methods 179 
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 7 

(Fig. 3j). The advantage of SBayesRC was even more pronounced under the large-effects and 180 

LDMS architecture (Fig. 3k-l), likely due to its ability to differentially weigh SNPs based on LD 181 

and MAF annotations, thereby improving causal variants identification.  182 

 183 

Furthermore, we used these simulations to evaluate GCS (Supplementary Fig. 5) and 184 

conducted sensitivity analyses to confirm the robustness of SBayesRC to missing annotations 185 

(Supplementary Fig. 6), unobserved causal variants (Supplementary Fig. 7), and the chosen 186 

value of LD matrix factorization parameter (Supplementary Fig. 8). To understand why GWFM 187 

had higher power, we investigated power gains in causal variants with different LD and MAF 188 

properties (Supplementary Fig. 9) and assessed SBayesRC within each LD block separately 189 

(Supplementary Fig. 10). These results are discussed in Supplementary Note 3. Overall, these 190 

simulation results suggested that SBayesRC is a reliable method for GWFM and can substantially 191 

improve fine-mapping performance. 192 

 193 

Assessing replication rate, effect size estimation, and prediction accuracy in real data  194 
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 8 

In real data analysis, direct evaluation of mapping power and precision is challenging since true 195 

causal variants are often unknown. Thus, we assessed methods using metrics that do not 196 

require knowledge of causal variants. First, we evaluated replication rate by calculating the 197 

proportion of variants with PIP > 0.9 in a GWAS sample that were also identified in an 198 

independent replication sample at the same or a lower PIP threshold. Assuming no systematic 199 

confounding, a higher replication rate suggests that the method identifies more genuine causal 200 

variants, as false positives are less likely to replicate. Using UKB height data (n=100,000) as a 201 

GWAS sample, SBayesRC achieved the highest replication rate in each PIP threshold, improving 202 

by 1% (compared to SuSiE-inf) to 11% (compared to FINEMAP) at PIP > 0.9 when replication 203 

n=100,000 (Fig. 4a). When replication sample size was doubled, the improvement increased to 204 

4% compared to SuSiE-inf and 19% compared to FINEMAP (Supplementary Fig. 11).  205 

 206 

We assessed bias in effect size estimates of putative causal variants through regressing their 207 

marginal effect sizes from the replication sample on the joint effect sizes estimated from the 208 

GWAS sample, expecting a regression slope of one for unbiased estimation. In the UKB height 209 

analysis, SBayesRC produced the minimal bias, with a regression slope of 0.98, outperforming 210 

all the other methods (Fig. 4b). This likely reflects the capacity of SBayesRC to estimate genetic 211 

architecture genome-wide, whereas other methods estimate genetic architecture locally or use 212 

preset parameters.   213 

 214 

Given that common causal variants and their effect sizes are mostly shared across ancestries35,36, 215 

knowing the causal variants should improve trans-ancestry prediction in complex traits. 216 

Therefore, we used fine-mapped variants and their posterior effect sizes from UKB European 217 

(EUR) ancestry individuals to predict phenotypes in African (AFR), East Asian (EAS), and South 218 

Asian (SAS) ancestry groups. We selected 6 complex traits that had at least 50 SNPs with PIP > 219 

0.9. Compared to SuSiE-inf, SBayesRC improved the trans-ancestry prediction accuracy, with 220 

nearly a 10-fold increase in mean relative prediction R2 across traits and ancestries (Fig. 4c). 221 

Similar improvements were observed when using 0.9-LCSs instead of individual SNPs 222 

(Supplementary Fig. 12) or when comparing to Polyfun+SuSiE with the same functional 223 

annotations (Supplementary Fig. 13). We further quantified the transferability of fine-mapped 224 

SNPs by computing the ratio of per-SNP prediction accuracy in a hold-out EUR sample versus a 225 

different ancestry. The result showed that relative prediction accuracy increased with PIP in the 226 

EUR GWAS sample (Fig. 4d), consistent with a model of shared genetic effects across ancestries.  227 

 228 

We validated these advantages of SBayesRC through simulations, confirming its superior power 229 

(Supplementary Fig. 14), replication rate (Supplementary Fig. 15a), effect size estimation 230 
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 9 

(Supplementary Fig. 15b), and out-of-sample prediction using fine-mapped variants 231 

(Supplementary Fig. 16), with further discussions in Supplementary Note 4. We also 232 

quantified the replication rate in the reverse case where the GWAS sample size was 200,000 but 233 

the replication sample size was only 100,000, to mimic the reality that the sample size of 234 

replication data is often much smaller than that of discovery, and again observed superior 235 

replication rate of our SBayesRC (Supplementary Fig. 17a,b). These results suggested that 236 

SNPs identified by SBayesRC are more likely to be causal, as indicated by higher replication 237 

rates, while the improved prediction accuracy likely arises from both better causal variant 238 

identification and more accurate effect size estimation. 239 

 240 

Prediction of fine-mapping power and variance explained for future studies 241 

As a unique feature of the GWFM approach, the genetic architecture estimated from SBayesRC 242 

provides key information to predict the proportion of causal variants identified (fine-mapping 243 

power) and the proportion of ����
�  explained by these variants (PHE) in future studies 244 

(Methods). To evaluate our approach, we computed the predicted values of power and PHE 245 

across varying GWAS sample sizes and projected the outcome of GWFM with SBayesRC onto the 246 

prediction for a simulated trait (under the sparse architecture), height30,37, high density 247 

lipoprotein (HDL)30,38, schizophrenia (SCZ)39,40, and Crohn’s disease (CD)30,41, which represented 248 

diverse genetic architectures, using two datasets with different sample sizes for each trait (Fig. 249 

5a-c). Despite some variation across traits, GWFM outcomes were broadly consistent with the 250 

theoretical predictions (Fig. 5d,e).  251 

 252 

Using the latest GWAS summary statistics from the Psychiatric Genomics Consortium (PGC)39, 253 

we identified 13 SNPs and 174 LCSs for SCZ, collectively explaining 4.2% of ����
�  on the liability 254 

scale (converted from observed �����
�  based on ref42). These estimates aligned closely with our 255 

theoretical prediction, based on the 53,386 cases and 77,258 controls in their study39, which is 256 

equivalent to a sample size of 228,810 on the liability scale (ref43; Methods). For a prospective 257 

SCZ study using GWFM, we predict that ~180k cases (with equal controls and a population 258 

prevalence of 0.01) would be required to fine-map 1,000 common causal variants (estimated to 259 

be 1.2% of all common causal variants), collectively explaining ~20% of ����
�  (Fig. 5). 260 

Increasing the sample size to ~550k cases would allow for the identification of 10% of causal 261 

variants explaining 50% of ����
� , while fine-mapping variants accounting for 80% of ����

�  would 262 

require 1.4 million cases according to our prediction.   263 

 264 

For height, based on the UKB data (n=350k), we predicted that with 5 million samples, ~10,000 265 

variants would be identified with individual PIP > 0.9 or ~30,000 when considering LCSs, 266 
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 10 

explaining up to 95% of the genetic variance (Fig. 5). This prediction is consistent with a recent 267 

GWAS of 5 million individuals, which reported 12,111 independently significant SNPs identified 268 

from COJO accounting for nearly all of the common ����
�  in height36. 269 

 270 

Applying genome-wide fine-mapping to a range of complex traits 271 

We applied GWFM with SBayesRC to 599 complex traits (597 UKB traits plus SCZ39 and CD41) 272 

and developed an online resource to query these fine-mapping results (see Data Availability; 273 

Supplementary Table 3). The 597 UKB traits were selected based on z-score > 4 and high 274 

confidence for heritability estimates using LD score regression44 275 

(https://zenodo.org/records/7186871). To better capture causal variants, we used 13 million 276 

imputed SNPs with functional genomic annotations from Finucane et al.45. Here, we focus on 48 277 

well-powered traits, including SCZ, CD39,41 and 46 UKB traits measured in the European 278 

ancestry individuals (Methods).  279 

 280 

Across the 48 traits, we identified 1,820 SNPs with PIP > 0.9, with the number of fine-mapped 281 

SNPs correlated strongly with the number of GWAS loci identified by LD clumping 282 

(Supplementary Fig. 18-19). However, 1,158 of these SNPs were not GWAS lead SNPs, and 283 

14.9% located outside GWAS loci (1Mb regions around independently significant SNPs) (Fig. 284 

6a). Consistent with our simulation results (Fig. 3a-c), this highlights the importance of 285 

conducting genome-wide fine-mapping to capture all relevant signals. Notably, 469 fine-286 

mapped SNPs (25.8%) were associated with multiple traits, suggesting prevalent pleiotropy in 287 

the human genome. Moreover, the MAF of pleiotropic SNPs decreased as the number of affected 288 

traits increased (Supplementary Fig. 20), consistent with a model of negative selection, where 289 

highly pleiotropic variants are either purged from the population or kept at low frequencies46.  290 
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 291 

We identified 19,863 0.9-LCSs with a median size of 5 SNPs, of which 29.8% were located 292 

outside the genome-wide significant loci (Fig. 6a). While these LCSs captured only 0.9% of 293 

causal variants, they explained 17.7% of ����
� , with 2.7% PHE (relative proportion of PHE = 294 

2.7%/17.7=15.3%) attributed to LCSs in non-significant GWAS regions (Fig. 6a). Across trait 295 

categories, cognitive traits had the highest proportion of LCSs and PHE observed outside GWAS 296 

loci (Fig. 6b), consistent with the high polygenicity of cognitive traits reported previously3. On 297 

average, the 0.1-GCS (expected to contain 10% of all causal variants) comprised ~1.5% of the 298 

SNPs, explaining 44.7% of the ����
�  (Fig. 6c,d). Reproductive traits had the largest 0.1-GCSs (2.3% 299 

of SNPs for 10% causal variant coverage), while blood cell traits had the smallest (0.55%) but 300 

explained a large proportion of ����
�  (54.6%), highlighting the impact of genetic architecture on 301 

fine-mapping uncertainty. 302 

 303 

Our results recapitulated previous findings and led to new discoveries. For example, we 304 

identified 13 SNPs at PIP > 0.9 for SCZ from the latest meta-analysis, 5 of which overlapped with 305 

SNPs identified by FINEMAP in their study39, and all 8 FINEMAP-identified SNPs were included 306 

in our 0.9-LCSs. Among the 5 novel fine-mapped SNPs not identified by FINEMAP based on 307 

individual PIP, 3 were missense variants (Supplementary Fig. 21a-d). We also identified novel 308 

putative causal variants for CD (Supplementary Table 4), fine-mapping 15 SNPs, including 5 309 

missense variants, and successfully recapitulated all 3 variants identified in a previous study 310 

using the same dataset41. Notably, at the NOD2 locus, we identified 4 putative causal variants 311 

(Supplementary Fig. 22), consistent with the well-established role of this locus in CD etiology.  312 

As further support for our method, we identified non-synonymous variants in 11 well-313 

established causal genes for Crohn’s disease, schizophrenia, height, and HDL (Supplementary 314 

Table 5).  315 
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 316 

Leveraging the estimated genetic architecture for these 48 traits, we predicted the power of 317 

prospective fine-mapping studies. With a sample size of 2 million individuals, we predict an 318 

average fine-mapping power of 10.4% (Fig. 6e) and an average PHE of 57.9% (Fig. 6f). The 319 

predicted power and PHE varied substantially across trait categories: blood cell traits had both 320 

the highest power (12.8%) and PHE (69.4%), while cognitive traits had the lowest (5.2% power, 321 

35.9% PHE). To achieve a PHE of 50%, blood cell traits required 1 million individuals, while 322 

cognitive traits required 4 million. For PHE = 80%, the required sample sizes increased to 3 323 

million for blood cell traits and 8 million for cognitive traits (Fig. 6f).  324 

 325 

Incorporating functional annotations improves fine-mapping 326 

SBayesRC incorporates functional annotations by learning their weights from the data, rather 327 

than relying on preassigned values. We observed multiple lines of evidence supporting the 328 

contribution of functional annotations to fine-mapping. First, although the impact of 329 

annotations varied across traits, certain functional annotations consistently had stronger 330 

impact on SNP effect weighting (Supplementary Fig. 23). Second, the 1,820 fine-mapped SNPs 331 

showed greater enrichment than GWAS significant SNPs in functional genomic regions, such as 332 

coding sequences, transcription start sites, non-synonymous variants, and conserved regions, 333 

and were more depleted in repressed regions (Fig. 7a). Third, fine-mapping power enrichment 334 

was strongly correlated with per-SNP heritability enrichment (r = 0.93), which is not subject to 335 

ascertainment bias (Supplementary Fig. 24). Fourth, among 13 fine-mapped SNPs for SCZ, 336 

running SBayesR (without annotations) identified 4 at PIP > 0.9 and the other 7 at lower but 337 

still meaningful PIP values (>0.5), suggesting that functional annotations enhanced fine-338 

mapping power. Finally, some putative causal variants could not be distinguished from SNPs in 339 

high LD without considering functional annotations, as demonstrated in the examples below. 340 

 341 

One notable example is the variant rs1421085 at the FTO locus, a known causal variant for body 342 

mass index (BMI)47, which was fine-mapped in a credible set from our analysis for body fat 343 

percentage (BFP), hip circumference (HC) and waist circumference (WC). Experimental 344 

evidence supports its causal role in regulating adipocyte thermogenesis47. Unlike the standard 345 

GWAS results, where many SNPs in FTO reached genome-wide significance, both SBayesRC and 346 

SuSiE-inf identified a 5-SNP 0.9-LCS that included rs1421085 for BMI, along with four additional 347 

SNPs in almost complete LD (minimum LD r2=0.997) and with strong annotation overlaps (Fig. 348 

7b). Notably, rs1421085 was prioritized in SBayesRC (PIP=0.47), likely due to its cross-species 349 

conservation annotations (Fig. 7c), whereas SuSiE-inf prioritized the GWAS lead SNP instead, 350 

underscoring the importance of incorporating functional annotations into fine-mapping. 351 
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Additionally, SBayesRC identified a secondary signal with another 0.9-LCS, which aligned with 352 

the result of SuSiE-inf but had not been previously reported. The lead SNP rs76488452 353 

(PIP=0.41) resided in a conserved region across primates and was significant in COJO analysis48 354 

(P=1.8×10-17) when conditioned on rs1421085. Notably, rs76488452 was only nominally 355 

significantly in GWAS marginal analysis (P=3.6×10-4), and its trait-increasing allele was in 356 

negative LD (r=-0.16) with that of rs1421085, indicating a masked effect at the SNP49 (estimated 357 

masked effect size b2–r×b1 = 0.02, consistent with the reported GWAS marginal effect size).   358 

 359 

We highlight additional examples where functional annotations improved fine-mapping. We 360 

recapitulated a missense variant (rs13107325) in SLC39A8, a gene implicated in the latest SCZ 361 

analysis for its function in regulating dendritic spine density50,51. This variant was identified 362 

through an aggregated effect from multiple key functional annotations at the SNP (Fig. 7d-e). 363 

Another notable SCZ variant is rs11854184 in SECISBP2L (Supplementary Fig. 21a), a gene 364 

highly expressed in brain-related tissues (Supplementary Fig. 25). SECISBP2L is specifically 365 

expressed in differentiating oligodendrocytes, where the SECISBP2L-DIO2-T3 pathway 366 

regulates oligodendrocyte differentiation during myelin development52. SNP rs11854184 is a 367 

missense variant conserved across primates and mammals, with a high PIP (0.91) despite not 368 

reaching genome-wide significance (P-value = 1.6e-6). Although the over-expression of 369 

SECISBP2L in the brain can be coincidental and further experimental validation is needed to 370 

confirm causality, this finding suggests that variants below genome-wide significance can still 371 

be biologically relevant and merit fine-mapping analysis. Moreover, compared to a recent 372 

exome-wide association study for CD53, we identified a novel gene (SLAMF8) with missense 373 

putative causal variants (Supplementary Fig. 26). These results highlight the power of 374 

SBayesRC in identifying putative causal variants and provide a valuable resource for 375 

downstream analysis and functional validation.  376 

 377 

Discussion 378 

In this study, we comprehensively evaluated GWFM using SBayesRC through extensive 379 

simulations and real data analyses, compared with existing fine-mapping methods that analyze 380 

one genomic region at a time. SBayesRC demonstrated superior PIP calibration, leading to 381 

better FDR control, particularly when the genetic architecture deviated from model 382 

assumptions (Fig. 2). Across various metrics, SBayesRC outperformed the best alternative 383 

method (SuSiE-inf) by 194% in mapping power, 21% in resolution, and 68% in precision (Fig. 384 

3). In real trait analyses, SBayesRC achieved higher replication rates, lower estimation bias, and 385 

greater prediction accuracy using fine-mapped SNPs in independent validation samples (Fig. 4), 386 

identifying putative causal variants missed by other methods (Fig. 7). To date, most fine-387 
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mapping studies have focused exclusively on genome-wide significant GWAS loci6-12. However, 388 

our analysis revealed that 30% of the local credible sets (median size=5) identified by SBayesRC 389 

were beyond genome-wide significant loci, contributing to 15% of the ����
�  captured by all local 390 

credible sets (Fig. 6a). These findings suggest GWFM as a more effective approach than current 391 

fine-mapping strategy that focuses solely on GWAS loci or individual regions, and highlight 392 

SBayesRC as a reliable and superior method for GWFM analysis.  393 

 394 

The advantage of GWFM over GWAS loci-based fine-mapping arise from several key aspects. 395 

First, incorporating functional annotations improves fine-mapping power. Unlike GWAS, which 396 

does not consider functional annotations, SBayesRC incorporates functional genomic 397 

information, improving SNP effect weighting and the ability to identify causal variants that 398 

would otherwise be overlooked in GWAS. Second, fine-mapping can identify causal variants 399 

masked by LD that do not reach genome-wide significance in GWAS. Previous works49,55 have 400 

shown that the LD masking between causal variants is common in complex traits, which can 401 

weaken their marginal association signals. However, fine-mapping methods that assess joint 402 

association signals across SNPs can recover these masked effects, identifying causal variants 403 

with strong PIPs despite their weaker marginal GWAS signals. Third, P-value and PIP serve 404 

different purposes in managing false positives. The genome-wide significance threshold in 405 

GWAS is designed to control of false positive rate under the null hypothesis, suffering from 406 

multiple testing burdens2. In contrast, PIP directly controls the FDR within a Bayesian 407 

framework, automatically accounting for multiple comparisons54. For example, with a PIP 408 

threshold of 0.9, 90% of identified variants are expected to be true positives, while 10% may be 409 

false positives. In comparison, GWAS significance threshold is often more conservative, 410 

potentially leading to missed true causal variants. Together, we recommend directly performing 411 

GWFM analysis, rather than restricting fine-mapping to genome-wide significant loci identified 412 

from GWAS.    413 

 414 

The advantages of SBayesRC over the region-specific fine-mapping methods is likely due to the 415 

following factors. First, SBayesRC involves a genome-wide analysis fitting all SNPs jointly across 416 

LD blocks. Compared to the existing practice focusing on 1-2 Mb regions6-12, using LD blocks 417 

better accounts for long-range LD, including the MHC region which is often excluded from the 418 

analysis10,39 (Supplementary Fig. 27). Although in this study all method comparisons were 419 

based on using same LD blocks as fine-mapping regions, SBayesRC benefits from genome-wide 420 

fitting which allows for better estimation of genetic architecture parameters from the full set of 421 

SNPs. Second, SBayesRC assumes a more realistic distribution of SNP effects through using 422 

MAF/LD groups along with other functional annotations. Unlike other fine-mapping methods6-12, 423 
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which either ignore annotation data or lack a unified framework to integrate it with GWAS data, 424 

SBayesRC estimates the impact of functional annotations and SNP effects within the same model, 425 

enabling a proper Bayesian learning process. This framework estimates, instead of preassign, 426 

weights to trait-relevant annotations, and is robust to the inclusion of irrelevant annotations 427 

(Fig. 2a). Third, SBayesRC utilizes Gibbs sampling algorithm to estimate model parameters and 428 

PIPs, which is asymptotically exact. In contrast, FINEMAP and FINEMAP-inf use shotgun 429 

stochastic search, while both SuSiE and SuSiE-inf rely on variational Bayes. Previous studies 430 

have demonstrated that MCMC sampling generally leads to a higher accuracy in capturing the 431 

posterior distribution than variational Bayes27.  432 

 433 

In addition to the improved fine-mapping performance, we introduced new features for GWFM 434 

using MCMC sampling. First, based on the posterior samples of SNP effects, we refined LCS by 435 

PEP, ensuring that all included SNPs explain more ����
�  than a random set. This approach is 436 

similar but more interpretable than the “purity” parameter in SuSiE (Supplementary Note 1; 437 

Supplementary Fig. 28-29). Second, while a LCS quantifies local uncertainty in identifying a 438 

causal variant, a GCS quantifies uncertainty in identifying all causal variants, reflecting both the 439 

power of current study and the genetic architecture of the trait. However, computing GCS 440 

requires an estimate of the total number of causal variants, which is better achieved when 441 

analysing all SNPs jointly in the model. Third, similar to estimating genome-wide polygenicity 442 

and ����
� , we estimated the proportion of polygenicity and ����

�  explained by LCSs and GCSs. 443 

The analysis of 48 complex traits showed that although 19,863 0.9-LCS were identified, they 444 

captured only 1% of all common causal variants, explaining 18% genetic variance, indicating 445 

that many causal variants with small effects remain undiscovered. Fourth, the genetic 446 

architecture estimation enables power calculations for fine-mapping, informing the sample size 447 

required to identify a certain proportion of causal variants or ����
�  explained in future studies. 448 

The robustness of this approach is supported by real data projections aligning with theoretical 449 

predictions (Fig. 5). Finally, to address poor mixing in standard Gibbs sampling when analyzing 450 

SNPs with extremely high LD, we implemented a scalable tempered Gibbs sampling algorithm32 451 

and assessed the convergence of each SNP’s PIP using multiple independent chains, facilitating 452 

robust posterior inference. 453 

 454 

We note several limitations of this work. First, there are certainly more complicated scenarios 455 

about effect size distribution for causal variants that have not been investigated in our 456 

simulations. However, SBayesRC remains one of the most flexible models available, as its 457 

assumed multi-component Gaussian mixture is well-suited to accommodate various scenarios. 458 

Second, unlike individual-level models where each PIP is estimated conditional on all other 459 
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SNPs jointly, SBayesRC is a summary-level model that ignores LD between LD blocks. As a result, 460 

SNPs outside the block influence PIP estimates only through the mixture distribution of SNP 461 

effects. Third, we applied SBayesRC only to GWAS summary data from relatively homogenous 462 

populations (inferred European ancestry) and the robustness of the methods on GWAS data 463 

based on trans-ancestry meta-analyses is not investigated. Future work should evaluate its 464 

performance in diverse populations. Fourth, SBayesRC requires LD information from a 465 

reference cohort that matches with GWAS ancestry without substantial sampling variation. Our 466 

simulation showed that when using a LD reference of thousands of samples (n=3,642), 467 

SBayesRC remained robust (Supplementary Fig. 30). However, with a smaller LD reference 468 

(n=500), we observed some inflation in PIPs, indicating the importance of sufficient LD 469 

reference sample size for maintaining accuracy. Fifth, to construct LCS, a LD threshold was 470 

arbitrarily chosen to define a set of SNPs in LD with the candidate causal variant. Although we 471 

have explored the robustness to this threshold (Supplementary Fig. 3), future methodological 472 

advancements, such as Bayesian hypothesis testing with hierarchical clustering56, could be used 473 

to relax this condition. Sixth, our power prediction is based on the genetic architecture 474 

estimates given a SNP set. However, as sample sizes increases, more common SNPs may be 475 

detected, potentially affecting polygenicity and SNP-based heritability estimates. Seventh, 476 

although we incorporated a comprehensive set of functional annotations from BaselineLD 477 

(v2.2)57, these annotations remain incomplete in genome coverage and lack tissue and cell-type 478 

diversity. Incorporation of context-dependent annotations, such as those derived from single-479 

cell data, could further enhance fine-mapping accuracy by capturing cell-type-specific 480 

regulatory effects. Despite these limitations, our study provides a powerful and robust GWFM 481 

framework for identifying causal variants, highlighting the advantages of this approach over 482 

existing region-specific fine-mapping methods. With its capacity to enhance mapping power in 483 

the current study and to predict mapping power for future studies, we anticipate that GWFM 484 

using a state-of-the-art GBMM will become the preferred method for fine-mapping complex 485 

traits.  486 
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Methods 487 

Ethics approval 488 

The University of Queensland Human Research Ethics Committee B (2011001173) provides 489 

approval for analysis of human genetic data used in this study on the high-performance cluster 490 

of the University of Queensland. 491 

 492 

Low-rank GBMM 493 

We used state-of-the-art GBMM that employed a low-rank model to improve computational 494 

efficiency and robustness24. As described below, the low-rank GBMM can be derived from the 495 

individual-level model. Consider a multiple linear regression of phenotypes on genotypes: 496 � � �� � �                                                                           (1) 497 

where � is an 	 
 1 vector of complex trait phenotypes and X is an 	 
 � matrix of mean-498 

centred genotypes, � is � 
 1 vector of SNP effects on the trait, and � is 	 
 1 vector of 499 

residuals with var��� � ���
�. Let  500 � � ���

�����	��                                                                     (2) 501 

where � and � are diagonal matrix of eigenvalues and matrix of eigenvectors for the LD 502 

correlation matrix � � ���/	 , respectively. It follows that ��� � �	�� , where �  is the 503 

projection matrix of � on the column space of �, and ��� � �	��. Multiplying both sides of Eq (2) 504 

by � gives 505 �� � ��� � ��                                                                      (3) 506 

or 507 � � �� � �                                                                          (4) 508 

When only the top q principal components of � are used, the dimension of � is  
 1 and � is 509  
 �. By selecting  ! 	, this model would have a substantially lower rank than Eq (1), 510 

improving the computational efficiency for the estimation of �. By default, our method 511 

automatically determines q through pseudo cross-validation based on GWAS summary statistics 512 

(Supplementary Note 10 of Zheng et al. 24). With a recognition that " � ���/	 is the GWAS 513 

marginal effect estimates, � can be directly computed from the GWAS summary statistics  514 � � ���
���"                                                                (5) 515 

with � and � obtained from a LD reference sample, and � can be computed as 516 � � ���
���� � ��

���                                                                (6) 517 

Essentially, the low-rank model transforms the mutually correlated GWAS marginal effects (") 518 

into a set of independent data points (�), while maintaining the ability to estimate individual 519 

SNP joint effects (�). In practice, we compute � and � within quasi-independent LD blocks in 520 

the human genome. With this low-rank model, we can estimate � for all common variants 521 
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jointly through considering � as random effects. In addition, this model allows a direction 522 

estimation of the residual variance, as var��� � ���
�	��, which can be used as a nuisance 523 

parameter to accommodate heterogeneity in the summary statistics and LD reference24.  524 

 525 

SBayesC, SBayesR, and SBayesRC 526 

GBMMs are flexible in specifying the prior distribution of SNP effects. In SBayesC, the prior for 527 

the effect of SNP # is given by  528 $	 ~ &'(0,  �
�+ � �1 , &�-                                                             (7) 529 

where �
� is the common variance across all causal variants, & is the proportion of SNPs with 530 

nonzero effects, and - is a point mass at zero. Both �
� and & are considered as unknown, with 531 �
� following a scaled inverse chi-squared prior distribution and & following a uniform prior 532 

distribution24. This is also the underlying model for most fine-mapping methods, assuming that 533 

only a fraction of SNPs are causal with nonzero effects. 534 

 535 

SBayesR22 extends SBayesC by assuming a more flexible prior distribution for SNP effects, using 536 

a multi-component Gaussian mixture: 537 $	 ~ ∑ &�'(0,  /����+

���                                                                  (8) 538 

where ��� is the total genetic variance, 0 � 10, 10�
, 10��, 10��, 10��2� are pre-specified scale 539 

factors that constrain the variance of each effect size distribution, representing zero, very small, 540 

small, medium, and large effect size categories, and &� is the prior probability of SNP j belonging 541 

to the kth distribution. With different &�  values, this multi-component mixture model can 542 

approximate almost any distribution of SNP effects. This allows SBayesR to better model genetic 543 

architectures with a wide range of effect sizes compared to SBayesC. 544 

 545 

To further account for the stratification of causal variants and their effects based on functional 546 

annotations, SBayesRC24 assumes a SNP-specific prior probability of distribution membership, 547 &	� , which depends on the annotations at each SNP through a generalised linear model: 548 3(&	�+ � 4� � ∑ 5	�
�
��� 6��                                                                 (9) 549 

where 3�·� is the probit link function, 4� is the intercept, 5	�  is the value of annotation 8 on SNP # 550 

(either binary or continuous annotations), and 6��  is the effect of annotation 8 on the prior 551 

probability of SNP j belonging to the kth distribution. To enable a data-driven estimation of 552 

annotation effects, we assume an independent and identical normal prior for each annotation 553 

effect, 6��  ~ '�0, ���

� �. This prior assumes, a priori, an equal contribution of all functional 554 

annotations to the SNP prior probability of membership. Details of the method and the MCMC 555 

sampling scheme can be found in ref24.  556 
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 557 

In this study, we ran SBayesRC with 4 MCMC chains, each consisting of 3,000 iterations with the 558 

first 1,000 discarded as burn-in. Analysing 13 million SNPs with 96 annotations, SBayesRC 559 

required only 150 GB of RAM and 13 hours of computation using 24 CPU cores, which are 560 

commonly available in a standard computing cluster. 561 

 562 

LD blocks 563 

We partitioned the genome into 1,588 approximately independent LD blocks, following the 564 

methods of Li et al13 and Berisa and Pickrell58. Specifically, we merged the LD blocks from Li et 565 

al. to ensure a minimum length of 1 Mb and treated the MHC region as a single LD block due to 566 

its complex LD patterns, which had the largest number of SNPs. As a result, our LD blocks 567 

ranged in size from 1 to 30 Mb, with a median length of 1.5 Mb. 568 

 569 

Calculation of PIP 570 

We assessed the strength of joint association of each SNP using PIP, i.e., the probability of a SNP 571 

being included with a nonzero effect in the model, given the data (w). Let 9	 be the indicator 572 

variable for the distribution membership for SNP #, with 9	 � 1 indicating a null effect and 573 9	 � 2, … , 5 indicating a nonzero component. In SBayesRC, we computed PIP for SNP # as  574 PIP	 � ∑ Pr(9	 � ?@�+

��� � 1 , Pr(9	 � 1@�+                                         (10) 575 

In the literature, Pr(9	 � 1@ABCB+, the probability of SNP # having a zero effect, is often 576 

computed by counting the frequency of 9	 � 1 across MCMC samples23,25. To improve precision, 577 

we use Rao-Blackwellized estimates59,60 and compute the posterior mean of 578 

[1 , Pr(9	 � 1@�, D+2 conditional on data and all the other parameters except $	 (D) across T 579 

iterations. That is, suppose E	
��� � 1 , Pr(9	 � 1@�, D���+, we have  580 

PIP	 � F GE	
���H � �

�
∑ I1 , Pr(9	 � 1@�, D���+J�

���                                         (11) 581 

where  582 

Pr(9	 � 1@�, D���+ � ���|����,��������

∑ ���|����,��������
�
�	�

                                               (12) 583 

with 3��|9	 � ?, D���� being the likelihood given 9	  and the sampled values of other parameters. 584 

A detailed derivation can be found in Supplementary Note 5.  585 

 586 

To further improve robustness, we run multiple MCMC chains simultaneously, randomly 587 

shuffling the sampling order of SNP effects in every iteration. For SNP j in chain s at iteration t, 588 

we have 589 
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E	
� ,�� � 1 , Pr(9	 � 1@�, D� ,��+                                               �13� 

Following Gelman and Rubin (1992)61, we calculated the potential scale reduction factor (PSRF) 590 

for each SNP PIP: 591 

MN	 � OP , 1P Q	 � 1P R	Q	
                                                                  �14� 

where Q	 � F 1TBU��E	
� ,���2  is the averaged within-chain variance across chains, and 592 

R	 � TBU 1F��E	
� ,���2 is the variance of the means of the chains. By comparing the between-chain 593 

variance to the within-chain variance, PSRF assesses whether the MCMC chains have converged 594 

to a stationary distribution. Empirically, a PSRF value below 1.2 indicates adequate 595 

convergence61. By pooling samples across chains, our final PIP estimate is 596 

PIP	 � F ,�1E	
� ,��2                                                                    �15� 

We report the PSRF value to imply if the SNP PIP is converged or not. SNPs with high PIP but 597 

large PSRF should be interpreted with caution. Running longer chains is recommended if a 598 

remarkable proportion of fine-mapped variants have high PSRG values. Across 48 well-powered 599 

complex traits analyzed, we found that none of fine-mapped individual SNPs (singleton LCSs) 600 

had PSRF < 1.2, while 99.4% of SNPs included in the local credible sets had PSRF < 1.2 and 99.9% 601 

had PSRF < 2, suggesting adequate convergence in our analyses. 602 

 603 

Heuristic estimation of mixture components 604 

The standard SBayesRC requires pre-specifying the number of mixture components before 605 

analysis. While polygenic prediction is generally robust to this choice24, fine-mapping may be 606 

affected if an unnecessary small-effect component is included, leading to null SNPs being 607 

misclassified and inflating PIP. This could bias the estimated number of causal variants. To 608 

address this, we implemented a heuristic procedure for determining the number of mixture 609 

components in SBayesRC. Multiple models, varying from 2 to 5 mixture components, were run 610 

in parallel for 500 MCMC iterations. The posterior distribution of ����
�  was then computed to 611 

assess model fit. The model with the highest posterior mean, where the lower bound (posterior 612 

mean minus standard error) was greater than that of the second-best model, was selected for 613 

formal analysis. If no significant difference was found, the model with the fewest components 614 

was chosen.  615 

 616 
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Tempered Gibbs sampling 617 

Joint analysis of all common variants presents a challenge for MCMC mixing when using the 618 

standard Gibbs sampling (GS) algorithm. For example, in a finite number of iterations, a 619 

common causal variant may fail to enter the model if the SNP in complete LD with it has already 620 

been selected. To address this issue, we incorporated a tempered Gibbs sampling (TGS) 621 

algorithm32 into our SBayesRC model. Essentially, TGS improves mixing by (1) strategically 622 

selecting SNPs for updating (“informed choice”) – focusing on those whose indicator variable 9	  623 

is currently in the tail of the full conditional distribution, and (2) allowing for longer jumps 624 

across local maxima by sampling 9	 from a tempered distribution. For computational efficiency, 625 

we applied TGS only to SNPs with nonzero effects sampled from the standard GS to assess 626 

whether alternative SNPs in high LD (r2>0.95) could provide a better fit. Further details on our 627 

TGS implementation and the corresponding pseudocode are provided in Supplementary Note 628 

6. 629 

 630 

Local credible sets 631 

Following prior work9, we defined LCS at confidence level α (α-LCS) as the minimum set of SNPs 632 

that contains at least one causal variant with probability α. To construct an α-LCS, SNPs were 633 

ranked by their PIPs. For a focal SNP that has the highest PIP and not yet assigned to an LCS, a 634 

candidate set was formed by including all remaining SNPs in high LD (r2 > 0.5) with the focal 635 

SNP. The α-LCS was then determined by summing PIPs in decreasing order until the total 636 

reached at least α. This process was iterated over SNPs until no possible LCS can be formed. For 637 

each α-LCS, we computed a posterior SNP-heritability enrichment probability (PEP) that the 638 

LCS explains more ����
�  than a random set of SNPs with the same size. We reported all 0.9-LCSs 639 

with PEP > 0.7 for each LD block. A schematic of the procedure is shown in Supplementary Fig. 640 

1, differences to existing approaches are discussed in Supplementary Note 1, and further 641 

justification of these thresholds based on simulations is provided in Supplementary Note 2.  642 

 643 

Global credible sets 644 

The α-GCS identifies the smallest set of SNPs that capture α% of the causal variants, quantifying 645 

the overall uncertainty in fine-mapping and reflecting the genetic architecture of the trait. The 646 

size of  α-GCS decreases with increasing power and a smaller fraction of small-effect variants. 647 

We computed the α-GCS as the cumulative sum of decreasingly ranked PIPs until the total 648 

exceeded 6 
 �� , where �� was the estimated number of causal variants from GBMM for the 649 

trait. Since each SNP is causal with probability PIPj, the expected number of causal variants in a 650 
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set Ω is E[Number of causal variants in Ω] � ∑ PIP		!Ω . Since the α-GCS is constructed such that 651 ∑ PIP		!#$� W 6 
 �� , this directly implies that E[Number of causal variants in α-GCS] W 6 
 �� . 652 

 653 

Estimation of power and variance explained given the data 654 

For the identified SNPs using individual PIP or LCS, we estimated the true positive rate (TPR or 655 

power) of identifying the causal variants at a given threshold α, 656 

TPR
α

� ∑ %&'&�| &'&�(α)�

*�
                                                               (16) 657 

where M is the total number of SNPs, and π is the proportion of causal SNPs. A formal derivation 658 

is given in Supplementary Note 7.  659 

 660 

The proportion of SNP-based heritability explained (PHE) by LCSs or GCS is estimated based on 661 

the MCMC samples of SNP effects. For a focal set (Ω) of SNPs in iteration t, we computed PHE as 662 

PHEΩ
��� � ∑ 
 ��

�
��Ω

∑ 

�
��


	�

                                                                 (17) 663 

where $·� is the sampled effect for a SNP in iteration t in scaled genotype units. Finally, we 664 

computed the posterior mean across MCMC iterations as the estimate for PHEΩ  665 PHEΩ � �

,
∑ PHEΩ

���,
���                                                             (18) 666 

where L is the total number of MCMC iterations.   667 

 668 

Prediction of power and variance explained for prospective studies 669 

We aim to predict the power of identifying a certain proportion of the causal variants in a 670 

prospective fine-mapping analysis, given a sample size (n) and the genetic architecture of the 671 

trait, when PIP from a GBMM is used as the test statistic. As shown in Supplementary Note 8, 672 

assuming that variance explained by the causal variant is \, the sampling distribution of PIP 673 

from the multi-component mixture model, e.g., SBayesRC, is 674 ]^] � 1 , �

�-∑ .�/0123�45
�
�	�

                                                             (19) 675 

where 5� � ��

��
_�

�

�

�̀

��

� and R� � 67�
�

�$�
  are two constants given the genetic architecture parameters 676 

(a and ����
� ), with _� � 7�

�

8�7�
� and �̀ � 	 � _� , and b is a data-dependent random variable 677 

following a non-central Chi-square distribution with the non-centrality parameter '`] � 69

7�
�: 678 

b ~ c�
��69

7�
��                                                                         (20) 679 

Given the threshold of PIP being 6 for the hypothesis test, the power to detect this causal 680 

variant can be calculated as 681 ]defU9 � Pr�]^] g 6|\� � h 3�]^]|\�d]^]�
�                                          (21) 682 
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where 3�]^]|\� is Eq (19) above. To compute the power for identifying any causal variant, we 683 

integrated out \ by 684 ]defU � h h 3�]^]|\�3�\�d\d]^]:
;

�
�                                              (22) 685 

where 686 3�\� � 3
�\�

��\��

�                                                                (23) 687 

and 3
�·� is the distribution of $ estimated from the SBayesRC model. 688 

 689 

Therefore, given a sample size, the expected number of causal variants identified from fine-690 

mapping is 691 F1'`T2 � ��1 , &�� 
 ]defU                                                      (24) 692 

The expected proportion of genetic variance explained by the fine-mapped variants is 693 F1]jF2 � ��1 , &������ h ]defU9 
 \3�\�d\:
;                                       (25) 694 

Since it is computationally challenging to obtain an analytical solution, we opted to estimate 695 

these quantities through Monte Carlo simulation (Supplementary Note 8).  While our 696 

theoretical prediction does not model LD between SNPs, the extent to which the observed 697 

values were consistent with the predicted suggests that LD had been effectively, albeit not 698 

perfectly, accounted for by our LCSs. 699 

 700 

Disease sample size at the liability scale 701 

For diseases or binary traits, we converted the GWAS summary statistics from the linear mixed 702 

model to the liability scale prior to running GBMM. Based on the method in Yang et al.43, we 703 

estimated the sample size at the liability scale that gives an equivalent power to detect a locus 704 

affecting a quantitative trait with the same properties,  705 '�< � =�>���>����

���?��                                                                   (26) 706 

where k is the disease prevalence, l is the sample prevalence, m � �/k  with h being the height 707 

of standard normal curve at the truncation point C � 1 , k, and ';� is the total number of cases 708 

and controls. Given the z-score (zj) from the original GWAS summary data for SNP j, the 709 

marginal effect and its standard error at the liability scale can be estimated as following ref62   710 

nF	 � o �

�@����@������-A�
��

                                                            (27) 711 

p	 � q	 
 nF	                                                                      (28) 712 

where E	  is the minor allele frequency of the SNP.  713 

 714 

The results from GBMM using the converted summary statistics will be directly comparable 715 

across traits regardless of the sample prevalence and the type of traits. In our prediction 716 
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analysis of power, we compared results between diseases and quantitative traits based on the 717 

equivalent sample size estimated from Eq (26). Similarly, to estimate the number of cases 718 

required, in a case-control study with equivalent number of controls, to achieve a certain power, 719 

we rearranged the same equation so that 720 

'�B � � �

�

���?�����

=�>���>�
                                                                 (29) 721 

 722 

Simulations based on imputed genotype data from the UK Biobank 723 

To evaluate the performance of GBMM, we ran simulations using imputed genotype data from 724 

the UK Biobank after quality control (QC). We selected 300,000 unrelated individuals and 725 

included ~1.2 million HapMap3 SNPs with MAF > 0.01, Hardy-Weinberg equilibrium test P > 726 

1×10-6, genotyping rate > 0.95, and imputation information score > 0.8 for simulations.  727 

 728 

We randomly sampled �� � 10,000 casual variants from the genome for 100,000 individuals 729 

and simulated complex trait phenotypes based on the following model: 730 � � �� � �                                                                        (30) 731 

where � is the genotype matrix for the causal variants, � is the vector of causal variant effects, 732 

and � ~'�0, �\BU����/�1 ��⁄ , 1�� with �� � 0.5 being the proportion of phenotypic variance 733 

explained by all the causal variants. Based on this underlying model, we simulated three genetic 734 

architectures: sparse architecture, large-effects architecture, and LD-MAF stratified (LDMS) 735 

architecture. In simulations under the sparse genetic architecture, causal variant effects were 736 

drawn from $=~'�0, �� ��⁄ �, while the remaining SNPs had zero effect. For the large-effects 737 

genetic architecture, effect sizes for causal variants were drawn from two distributions, 10 738 

random causal variant with effects from '�0, 0.2 �� 10⁄ � and the remaining causal variants with 739 

effects from '�0, 0.8 �� 9990⁄ �. For the LDMS model, we partitioned all genome-wide SNPs into 740 

four LD and MAF groups (by their median values) and only sampled the causal variants from the 741 

high LD and high MAF group with the same normal distribution as in the sparse genetic 742 

architecture.  743 

  744 

We ran a standard GWAS using the genotypes and the simulated phenotypes under different 745 

genetic architectures. We then used the GWAS summary data to perform GBMM (SBayesRC24, 746 

SBayesR22, and SBayesC) implemented in GCTB, along with SuSiE6, FINEMAP7, SuSiE-inf8, 747 

FINEMAP-inf8 and PolyFun+SuSiE10, to compute PIPs for detecting causal variants and estimate 748 

their effect sizes. For all methods, we followed the recommended default parameter settings. 749 

Specifically, for SuSiE and SuSiE-inf, we set the purity parameter to 0.5, the maximum number of 750 

SNPs per credible set (n_purity) to 100, and max number of causal variants to 10. We used 751 
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imputed genotypes from 10,000 random samples of European ancestry from the UKB as the LD 752 

reference. To ensure a fair comparison, we used the same LD reference sample and the same 753 

independent LD blocks to define fine-mapping regions for all fine-mapping methods, 754 

irrespective of p-value significance. We repeated the whole process 100 times and quantified 755 

the true discovery rate (TDR), power, mapping precision, and replication rate for each method. 756 

TDR was quantified as the proportion of identified α-LCS containing at least one causal variant, 757 

while power was defined as the proportion of simulated causal variants included in the 758 

identified α-LCS. Mapping precision was computed as the physical distance between the 759 

identified SNPs and nearest causal variants. The replication rate was the proportion of variants 760 

with PIP > 0.9 in a GWAS sample that were identified in an independent replication sample at 761 

the same or a lower PIP threshold. 762 

 763 

Real data analysis 764 

We analysed 597 complex traits from UK Biobank using GWAS summary data from Neale’s lab 765 

(Data Availability) and schizophrenia39 and Crohn’s disease41 using previously published 766 

GWAS summary data. The 597 UKB traits were selected based on z-score > 4 and high-767 

confidence heritability estimates using LD score regression57. We used annotations from the 768 

baseline model BaseLineLD v2.257 and extract imputed SNPs with MAF > 0.001 and that 769 

overlapped with the annotations, resulting in 13,065,104 imputed SNPs passed quality control. 770 

We used 10,000 random samples from the UKB as the LD reference to run the SBayesRC and 771 

other region-specific fine-mapping analysis. Additionally, we selected 48 well-powered traits 772 

with relatively large sample size (n > 100, 000), high heritability estimate (h2 > 0.1), and at least 773 

one fine-mapped SNP with PIP > 0.9.  774 

 775 

For the polygenic score prediction analysis using fine-mapped variants only, we performed 776 

quality control on the imputed genotype data provided by the UKB analysis team30. Following 777 

ref24, we kept SNPs with MAF > 0.01, Hardy-Weinberg Equilibrium test P > 10-10, imputation info 778 

score > 0.6 within each ancestry samples. We removed samples with mismatched sex 779 

information, samples withdrawn from participation, and cryptic related samples. The final UKB 780 

dataset consisted of 4 ancestries: European (EUR, N= 347,800), East Asian (EAS, N=2,252), 781 

South Asian (SAS, N=9,436) and African (AFR, N=7,006). For continuous traits, the phenotypes 782 

were filtered within the range of mean +/- 7SD, followed by rank-based inverse-normal 783 

transformed within each ancestry and sex group. GWAS were performed using PLINK263 with 784 

sex, age, and the first 10 principal component as covariates. Linear regression was used for 785 

continuous traits, while logistic regression was applied for binary traits.  786 

 787 
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Supplementary Information 788 

Supplementary data include 29 supplementary figures, 4 supplementary tables and 8 789 

supplementary notes. 790 

 791 

Data Availability 792 

Our SBayesRC-enabled genome-wide fine-mapping results for 599 complex traits are available 793 

at link (https://sbayes.pctgplots.cloud.edu.au/data/SBayesRC/share/Finemap/v1.1/). The UK 794 

Biobank data are available through formal application to the UK Biobank 795 

(http://www.ukbiobank.ac.uk). The GWAS summary data for 597 complex traits in UK Biobank 796 

are from http://www.nealelab.is/uk-biobank/. The LD data used in this study are available at 797 

https://cnsgenomics.com/software/gctb/#Download. All the other datasets used in this study 798 

are available in the public domain.  799 

 800 

Code Availability 801 

Summary-data-based genome-wide Bayesian mixture models are implemented in a public 802 

available software GCTB at https://cnsgenomics.com/software/gctb/#Download. Methods to 803 

compute LCS and GCS have also been implemented in GCTB 804 

(https://cnsgenomics.com/software/gctb/#Genome-wideFine-mappinganalysis). Online tool 805 

for predicting fine-mapping power: https://sbayes.pctgplots.cloud.edu.au/shiny/power/. 806 
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 1003 

Figure 1 Schematic overview of genome-wide fine-mapping (GWFM) analysis using GBMM. 1004 

GBMM utilizes GWAS summary statistics and genome-wide LD reference to fine-map candidate 1005 

causal variants for complex traits, incorporating functional annotations when available. Unlike 1006 

region-specific fine-mapping approaches, GBMM maps causal signals across the entire genome 1007 

and provides greater flexibility in modelling the distribution of causal effects by estimating 1008 

priors using genome-wide SNPs (Table S1). Different GBMMs share the same fitted model but 1009 

differ in prior specification for SNP effects. As shown in the middle box, SBayesRC assumes a 1010 

mixture prior consisting of a point mass at zero and multiple normal distributions with variance 1011 /�����
� , where /� � 10, 1�
, 1��, 1��, 1��2′. The mixing probability for SNP j in distribution k 1012 

(&	�) is modelled as a linear combination of SNP annotations through a probit link. The color 1013 

scheme is as follows: blue denotes input data, green denotes SNP-specific parameters, and red 1014 

denotes global parameters shared across SNPs. The GBMM output includes SNP PIPs, local and 1015 

global credible sets, and prediction of fine-mapping power for future studies. The illustration in 1016 

the left box was created with BioRender.com.  1017 
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 1018 

Figure 2 Comparison in the calibration of PIP between GWFM and existing fine-mapping 1019 

methods under simulations with various genetic architectures. Shown are relationships 1020 

between PIP and the true discovery rate (TDR) across 100 PIP bins. Left column: SBayesC, 1021 

SBayesR, and SBayesRC; middle column: SuSiE-inf and FINEMAP-inf; right column: SuSiE, 1022 

FINEMAMP, and Polyfun + SuSiE. Top row: sparse genetic architecture; middle row: large-1023 

effects genetic architecture; Bottom row: LDMS architecture.    1024 
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1025 

Figure 3 Comparison in mapping power, resolution, and precision between methods based on 1026 

simulations. Panels (a-c) compare mapping power between GWFM and GWAS loci-based 1027 

strategies at the same confidence level (α) for LCSs. For a fair comparison, both strategies used 1028 

the same PIP estimates from SBayesRC, whereas GWAS loci-based fine-mapping constructed α-1029 

LCSs restricted to 2Mb regions around GWAS lead SNPs (P-value < 5×10-8). Panels (d-f) compare 1030 
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mapping power across different methods, including SBayesRC, SuSiE-inf, Polyfun + SuSiE. 1031 

Power was quantified as the proportion of simulated causal variants included in the credible 1032 

sets reported by each method. Panels (g-i) compare mapping resolution across SBayesRC, 1033 

SuSiE-inf, and Polyfun + SuSiE, measured by the credible set size. Panels (j-l) compare mapping 1034 

precision across different methods, measured by the physical distance between the causal 1035 

variants and the SNPs identified at PIP ≥ 0.9 in each method. Columns correspond to 1036 

simulations under the sparse genetic architecture (left column), large-effects genetic 1037 

architecture (middle column), and LDMS genetic architecture (right column).   1038 
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 1039 

Figure 4 Comparison of independent sample replication, effect size estimation bias, and 1040 

prediction accuracy using fine-mapped variants across fine-mapping methods in UK biobank 1041 

traits. (a) Replication rate of discovery using different methods at a given PIP threshold in the 1042 

replication sample (x-axis) for height in the UKB. (b) Regression of the estimated marginal effect 1043 

sizes in replication samples on the estimated joint effect sizes in discovery samples using 1044 

different fine-mapping methods. Dash lines show the regression slopes, where values closer to 1045 

one indicate less bias, as the marginal effect estimated in the independent replication sample is 1046 

an unbiased estimate to the true effect. The brown solid line is y=x. (c) Comparison of trans-1047 

ancestry prediction accuracy using fine-mapped variants (PIP > 0.9) from SBayesRC and SuSiE-1048 

inf, based on the analysis using samples of European ancestry for GWAS and the other 1049 

ancestries for validation across 6 UKB traits. BMI: body mass index; BMR: base metabolic rate; 1050 

hBMD: heel bone mineral density; HDL: high-density lipoprotein level; HT: height; RBC: red 1051 
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blood cell count. AFR: African ancestry; EAS: East Asian ancestry; SAS: South Asian ancestry. (d) 1052 

Relationship between trans-ancestry prediction transferability and PIP estimates in the 1053 

European ancestry. The transferability was computed as non-EUR-R2/ EUR-R2. The solid lines 1054 

are regression lines across traits in each ancestry.   1055 
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 1056 

Figure 5 Projection of genome-wide fine-mapping outcomes to the theoretical power prediction 1057 

in complex traits with diverse genetic architectures. (a) Estimates of SNP-based heritability 1058 

(����
� ) obtained using SBayesRC for height, Crohn’s disease (CD), schizophrenia (SCZ), high 1059 

density lipoprotein (HDL), and a simulated trait with the sparse genetic architecture. (b) 1060 

Proportions of ����
�  explained by different mixture components in the SBayeRC model. (c) 1061 

Proportions of SNPs assigned to different mixture components (a) based on their estimated 1062 

effect sizes. The “zero”, “very small”, “small”, “medium” and “large” effect categories correspond 1063 

to the five variance components in SBayesRC, which explain 0, 0.001, 0.01, 0.1, and 1% ����
� , 1064 

respectively. For the simulated traits, all 10,000 causal variants had small effects sampled from 1065 

a single normal distribution, leading to all estimated effect sizes being assigned to the very small 1066 

effect category. (d-e) Theoretical prediction of the power of identifying causal variants (d) and 1067 

the proportion of ����
�  explained by the identified causal variants (e) across different GWAS 1068 

sample sizes for these traits. Dots show the empirical observations based on 0.9-LCSs identified 1069 

from SBayesRC. The genetic architecture estimates from (a, c) were used as input data for the 1070 

fine-mapping power prediction (d-e). To check consistency, two datasets with different GWAS 1071 

sample sizes were analyzed for each trait, with genetic architecture estimates derived from the 1072 

dataset with the smaller sample size.    1073 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2025. ; https://doi.org/10.1101/2024.07.18.24310667doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.18.24310667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

 1074 

Figure 6 Identification of local credible set and genome-wide credible set SNPs, and theoretical 1075 

prediction of fine-mapping power for 48 independent complex traits. Panel (a) shows the 1076 

proportion of the identified local credible sets (LCSs) within or outside the GWAS loci (left) and 1077 

the proportion of variance explained by the identified LCSs within or outside the GWAS loci 1078 

(right). Panel (b) shows the relationship between the proportion of LCSs outside GWAS loci and 1079 

proportion of PHE across the 48 complex traits. Panel (c) shows the proportion of identified GCS 1080 

SNPs at different alpha threshold (proportion of causal variants captured) for the 48 complex 1081 

traits (average sample size = 291K). Panel (d) shows the proportion of ����
�  explained by the 1082 

GCS SNPs at different alpha threshold. Panel (e-f) show theoretical prediction of power and 1083 
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proportion of SNP-based heritability explained by LCS SNPs at different GWAS sample sizes for 1084 

the 48 complex traits, respectively. Colours indicate different trait categories.   1085 
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 1086 

Figure 7 Genome-wide fine-mapping with functional annotations helped pinpoint the putative 1087 

causal variants. Panel (a) shows enrichment of the genome-wide fine-mapped SNPs from 1088 

SBayesRC and GWAS clumped SNPs in the 22 main functional categories defined in the LDSC 1089 

baseline model. Panel (b) shows the prioritized causal variant at the FTO locus for BMI. The top 1090 

track shows the FTO locus plot of the standard GWAS for BMI, the second track shows the 1091 
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similar plot but with the PIP from SBayesRC for BMI, and the third track shows the similar plot 1092 

with PIP from SuSiE-inf. The dots with green circles are credible set SNPs identified by 1093 

SBayesRC. The starred SNP is the known causal variant (rs1421085) for obesity at the FTO locus 1094 

supported by previous functional studies. Panel (c) shows the per-SNP heritability enrichment 1095 

for the causal variant (rs1421085), the GWAS lead variant (rs11642015) and the secondary 1096 

signal (rs76488452) for BMI at the FTO locus. The annotations on the x-axis were those present 1097 

at least once in these three variants, excluding quantitative annotations and duplicated 1098 

annotations with flanking windows. Panel (d) shows the prioritized causal variant at the 1099 

SLC39A8 locus for SCZ. The top track shows the SLC39A8 locus plot of the standard GWAS for 1100 

SCZ, and the second track shows the similar plot but with the PIP from SBayesRC for SCZ. The 1101 

starred SNP is the missense variant (rs13107325) fine-mapped for SCZ at the SLC39A8 locus. 1102 

Panel (e) shows the per-SNP heritability enrichment for the causal variant (rs13107325) and 1103 

the secondary signal (rs34333163) for SCZ at the SLC39A8 locus.  1104 
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